Herein, we investigated the chemical reactions associated with low-energy electron exposures on an inorganic-organic hybrid thin film system deposited using molecular atomic layer deposition (MALD) for EUV photoresist applications. Using the hybrid thin films consisting of trimethylaluminum (TMA) and hydroquinone (HQ), we determined the critical doses and thickness contrast of the hybrid materials at various electron energies (up to 400 eV). The custom-built in-situ Fourier-Transform Infrared (FTIR) spectroscopy system, equipped with an electron flood gun and gas residual analyzer (RGA), was employed to monitor the chemical changes induced by low-energy electrons in the hybrid thin films. Based on the in-situ FTIR and RGA results, potential chemical reaction mechanisms responsible for the change in solubility of the TMA/HQ material are proposed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.