This will count as one of your downloads.
You will have access to both the presentation and article (if available).
We characterize a prototype array of laser-micromachined feedhorns designed for operation in the band 80–160 GHz. We compare the optical performance of these horns at room-temperature to horns produced using the traditional DRIE process, and contrast both against simulation. Furthermore, we explore additional potential advantages to laser-micromachining, e.g. sidewall control and thicker wafers. Finally, we share fabrication experience and discuss the outlook for high-throughput feedhorn production using laser-machined wafers.
AliCPT-1 is the first CMB degree scale polarimeter to be deployed to the Tibetan plateau at 5,250m asl. AliCPT-1 is a 95/150GHz 72cm aperture, two lens refracting telescope cooled down to 4K. Alumina lenses image the CMB on a 636mm wide focal plane. The modularized focal plane consists of dichroic polarization-sensitive Transition-Edge Sensors (TESes). Each module includes 1,704 optically active TESes fabricated on a 6in Silicon wafer. Each TES array is read out with a microwave multiplexing with a multiplexing factor up to 2,000. Such large factor has allowed to consider 10's of thousands of detectors in a practical way, enabling to design a receiver that can operate up to 19 TES arrays for a total of 32,300 TESes. AliCPT-1 leverages the technological advancements of AdvACT and BICEP-3. The cryostat receiver is currently under integration and testing. Here we present the AliCPT-1 receiver, underlying how the optimized design meets the experimental requirements.
BLAST-TNG features three detector arrays operating at wavelengths of 250, 350, and 500 m (1200, 857, and 600 GHz) comprised of 918, 469, and 272 dual-polarization pixels, respectively. Each pixel is made up of two crossed microwave kinetic inductance detectors (MKIDs). These arrays are cooled to 275 mK in a cryogenic receiver. Each MKID has a different resonant frequency, allowing hundreds of resonators to be read out on a single transmission line. This inherent ability to be frequency-domain multiplexed simplifies the cryogenic readout hardware, but requires careful optical testing to map out the physical location of each resonator on the focal plane. Receiver-level optical testing was carried out using both a cryogenic source mounted to a movable xy-stage with a shutter, and a beam-filling, heated blackbody source able to provide a 10-50 C temperature chop. The focal plane array noise properties, responsivity, polarization efficiency, instrumental polarization were measured. We present the preflight characterization of the BLAST-TNG cryogenic system and array-level optical testing of the MKID detector arrays in the flight receiver.
View contact details
No SPIE Account? Create one