This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The integration and testing program for the Simons Observatory Large Aperture Telescope optics tubes
Comparing complex impedance and bias step measurements of Simons Observatory transition edge sensors
We explore observing strategies for both small (0.42 m) aperture telescopes (SAT) and a large (6 m) aperture telescope (LAT). We study strategies focused on small sky areas to search for inflationary gravitational waves as well as strategies spanning roughly half the low-foreground sky to constrain the effective number of relativistic species and measure the sum of neutrino masses via the gravitational lensing signal due to large scale structure. We present these strategies specifically considering the telescope hardware and science goals of the SO, located at 23° South latitude, 67.8° West longitude.
Observations close to the Sun and the Moon can introduce additional systematics by applying additional power to the instrument through telescope sidelobes. Significant side lobe contamination in the data can occur even at tens of degrees or more from bright sources. Therefore, we present several strategies that implement Sun and Moon avoidance constraints into the telescope scheduling.
Scan strategies can also be a powerful tool to diagnose and mitigate instrumental systematics either by using multiple scans to average down systematics or by providing null tests to diagnose problems. We discuss methods for quantifying the ability of an observation strategy to achieve this.
Strategies for resolving conflicts between simultaneously visible fields are discussed. We focus on maximizing telescope time spent on science observations. It will also be necessary to schedule calibration measurements, however that is beyond the scope of this work. The outputs of this study are algorithms that can generate specific schedule commands for the Simons Observatory instruments.
We measure CE7 to a) superconduct below a critical transition temperature, Tc, ~1.2 K, b) have a thermal contraction profile much closer to Si than metals, which enables simple mating, and c) have a low thermal conductivity which can be improved by Au-plating. Our investigations also demonstrate that CE7 can be machined well enough to fabricate small structures, such as #0-80 threaded holes, to tight tolerances (~25 μm) in contrast with pure silicon and similar substrates. We have fabricated CE7 baseplates being deployed in the 93 GHz polarimetric focal planes used in the Cosmology Large Angular Scale Surveyor (CLASS).1 We also report on the development of smooth-walled feedhorn arrays made of CE7 that will be used in a focal plane of dichroic 150/220 GHz detectors for the CLASS High-Frequency camera.
Design and characterization of the Cosmology Large Angular Scale Surveyor (CLASS) 93 GHz focal plane
Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a movable flat mirror. Varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The CLASS telescopes have VPMs as the first optical element from the sky; this simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization further along in the optical path.
The CLASS VPM wire grids use 50 μm copper-plated tungsten wire with a 160μm spacing across a 60 cm clear aperture. The mirror is mounted on a flexure system with one degree of translational freedom, enabling the required mirror motion while maintaining excellent parallelism with respect to the wire grid. The wire grids and mirrors are held parallel to each other to better than 80 μm, and the wire grids have RMS flatness errors below 50 μm across the 60 cm aperture. The Q-band CLASS VPM was the first VPM to begin observing the CMB full time, starting in the Spring of 2016. The first W-band CLASS VPM was installed in the Spring of 2018.
The large aperture telescope receiver (LATR) is coupled to the SO six-meter crossed Dragone telescope and will be 2.4 m in diameter, weigh over 3 metric tons, and have five cryogenic stages (80 K, 40 K, 4 K, 1 K and 100 mK). The LATR is coupled to the telescope via 13 independent optics tubes containing cryogenic optical elements and detectors. The cryostat will be cooled by two Cryomech PT90 (80 K) and three Cryomech PT420 (40 K and 4 K) pulse tube cryocoolers, with cooling of the 1 K and 100 mK stages by a commercial dilution refrigerator system. The secondo component, the small aperture telescope (SAT), is a single optics tube refractive cameras of 42 cm diameter. Cooling of the SAT stages will be provided by two Cryomech PT420, one of which is dedicated to the dilution refrigeration system which will cool the focal plane to 100 mK. SO will deploy a total of three SATs.
In order to estimate the cool down time of the camera systems given their size and complexity, a finite difference code based on an implicit solver has been written to simulate the transient thermal behavior of both cryostats. The result from the simulations presented here predict a 35 day cool down for the LATR. The simulations suggest additional heat switches between stages would be effective in distribution cool down power and reducing the time it takes for the LATR to reach its base temperatures. The SAT is predicted to cool down in one week, which meets the SO design goals.
The cosmology large angular scale surveyor (CLASS): 38-GHz detector array of bolometric polarimeters
View contact details
No SPIE Account? Create one