Fourier Transform Infrared spectroscopy offers inline solutions for chemical bonding, epi thickness, and trench depth measurements. Through optical modeling of the transmission or reflectance spectra, information about the electronic structure and chemical composition may be obtained, which can be used for process control and monitoring. In this article, we demonstrate the measurement capabilities of FTIR for the hydrogen bonding in cell silicon nitride and amorphous carbon hard masks (ACHM), which are used for 3D NAND fabrication. For cell silicon nitride, deconvolution of the spectra allows differentiation between individual peaks corresponding to Si-N, Si-H, N-H, Si-O, and Si-OH bonds. This differentiation identifies wafers with varying hydrogen content and distinct processes. Similarly, for ACHM, peak areas related to sp2 C-H bonds and aromatic C=C bending reveals the hydrogen skew conditions in three wafers. Notably, a linear relationship between high broadband absorption and low C-H bonds (and aromatic C=C) peak area is observed. The measurements exhibit good repeatability across ultrathin silicon nitride and thick ACHM samples. We believe the technique can be valuable for compositional process control, considering the significance of hydrogen content in cell nitride performance and endurance, as well as the influence of hydrogen content and carbon sp2/sp3 ratio on selective etch ratios in dry etch processes involving ACHM and mechanical properties of the films.
The adoption of tier stacking (dual deck) leads to increasingly high aspect ratios and poses challenges in controlling overlay, tilt, and misalignment in the manufacturing processes for next generation 3D NAND devices. In this work we address metrology challenges such as tilt and overlay separation, measurement robustness influenced by process variation, and nonlinearity of spectral response to asymmetries. We show that Mueller measurement can separate overlay and tilt signals through distinct spectral response analyzed by a machine learning method with reference data. To reduce asymmetry measurement errors caused by process variation such as critical dimension (CD) and thickness changes, we propose and demonstrate improvement of tilt measurements on blind test wafers by feeding forward CD measurement results to the analysis of tilt signal. We also investigate nonlinear regression and show its capability to extend overlay measurement limit from linear response range, ±0.25pitch, to ±0.43pitch. In addition, for small structural asymmetries introduced by channel hole tilt, test RMSE is reduced by 20–40% from nonlinear regression alone or combined with CD feed-forward. We demonstrate that spectroscopic Mueller matrix measurements, paired with advanced machine learning analysis, provide nondestructive and accurate measurement of tilt, overlay, and misalignment for 3D NAND devices with high throughput and fast recipe creation.
Silicon photonics has traditionally focused on near infrared wavelengths, with tremendous progress seen over the past decade. However, more recently, research has extended into mid infrared wavelengths of 2 μm and beyond. Optical modulators are a key component for silicon photonics interconnects at both the conventional communication wavelengths of 1.3 μm and 1.55 μm, and the emerging mid-infrared wavelengths. The mid-infrared wavelength range is particularly interesting for a number of applications, including sensing, healthcare and communications. The absorption band of conventional germanium photodetectors only extends to approximately 1.55 μm, so alternative methods of photodetection are required for the mid-infrared wavelengths. One possible CMOS compatible solution is a silicon defect detector. Here, we present our recent results in these areas. Modulation at the wavelength of 2 μm has been theoretically investigated, and photodetection above 25 Gb/s has been practically demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.