Along with process improvement and integrated circuit (IC) design complexity increased, failure rate caused by optical getting higher in the semiconductor manufacture. In order to enhance chip quality, optical proximity correction (OPC) plays an indispensable rule in the manufacture industry. However, OPC, includes model creation, correction, simulation and verification, is a bottleneck from design to manufacture due to the multiple iterations and advanced physical behavior description in math. Thus, this paper presented a pattern-based design technology co-optimization (PB-DTCO) flow in cooperation with OPC to find out patterns which will negatively affect the yield and fixed it automatically in advance to reduce the run-time in OPC operation.
PB-DTCO flow can generate plenty of test patterns for model creation and yield gaining, classify candidate patterns systematically and furthermore build up bank includes pairs of match and optimization patterns quickly. Those banks can be used for hotspot fixing, layout optimization and also be referenced for the next technology node. Therefore, the combination of PB-DTCO flow with OPC not only benefits for reducing the time-to-market but also flexible and can be easily adapted to diversity OPC flow.
Beyond 40 nm technology node, the pattern weak points and hotspot types increase dramatically. The typical patterns for
lithography verification suffers huge turn-around-time (TAT) to handle the design complexity. Therefore, in order to
speed up process development and increase pattern variety, accurate design guideline and realistic design combinations
are required. This paper presented a flow for creating a cell-based layout, a lite realistic design, to early identify
problematic patterns which will negatively affect the yield.
A new random layout generating method, Design Technology Co-Optimization Pattern Generator (DTCO-PG), is
reported in this paper to create cell-based design. DTCO-PG also includes how to characterize the randomness and
fuzziness, so that it is able to build up the machine learning scheme which model could be trained by previous results,
and then it generates patterns never seen in a lite design. This methodology not only increases pattern diversity but also
finds out potential hotspot preliminarily.
This paper also demonstrates an integrated flow from DTCO pattern generation to layout modification. Optical
Proximity Correction, OPC and lithographic simulation is then applied to DTCO-PG design database to detect hotspots
and then hotspots or weak points can be automatically fixed through the procedure or handled manually. This flow
benefits the process evolution to have a faster development cycle time, more complexity pattern design, higher
probability to find out potential hotspots in early stage, and a more holistic yield ramping operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.