Fraunhofer HHI’s hybrid photonic integration technology based on SiN and polymer waveguiding platforms enables photonic integrated circuits operating at wavelengths from the infrared down to the visible. Hybrid photonic integration processes allow integrating active photonic building blocks such as lasers and active sections, as well as non-reciprocal and non-linear functionalities. Those features prove the large potential of Fraunhofer HHI’s hybrid photonic integration technology in application domains such as sensing and quantum technologies.
A photonic engine for the integration of multi-lane optical transceivers is presented. The building blocks are InP-based electro-absorption modulated lasers and photodiodes capable of operating at 50 GBaud with PAM-4 modulation, and a low-cost polymer waveguiding chip providing routing of the multiple lanes and connectivity towards standard single-mode fibers. An automatic process for the hybrid assembly of the different building blocks has been developed, and photonic integrated circuits with up to 16 lanes have been demonstrated. Furthermore, high-frequency flexible interconnects with bandwidths beyond 100 GHz provide a connectivity solution between photonics and high-speed electronics.
Photonic integrated circuits (PICs) are one of the key enablers for beyond 5G networks. A novel generation of fully integrated photonic-enabled transceivers operating seamlessly in W- D- and THz-bands is developed within the EU funded project TERAWAY. Photonic integration technology enables key photonic functionalities on a single PIC including photonic up/down conversion. For efficient down-conversion at the photonic integrated receiver, we develop the first waveguide-fed photoconductive antenna for THz communications. Finally, we report on the experimental implementation of a fully photonic-enabled link operating across W- D- and THz-bands.
Fraunhofer HHI's hybrid integration platform PolyBoard combines polymer passive waveguides with InP and other materials. We present new functionalities integrated in PolyBoard:
Isolation: With a microoptical bench integrated into polymer isolators can be built.
Quantum and sensing: By integrating nonlinear materials into the microoptical bench, 2nd (775 nm), 3rd (515 nm), and 4th (387 nm) harmonic generation could be observed
3D: First results for a 2x4 phased array have been achieved
Flip-chip laser active alignment: We have developed an active alignment process, which also works for flip-chip lasers which are impossible to electrically contact during the alignment process.
First automation results show the potential for cost effective volume scaling.
We describe the assembly of a 5G transceiver leveraging photonics for the generation, emission and detection of THz wireless signals. The transceiver and all associated control electronics and power supplies are designed for mounting in a mobile aerial unit. A photonics motherboard concept that brings together polymer, III-V and SiNbased photonic platforms and provides optical fiber connectivity is used for the assembly. In addition, scalable integration of 3D components, in this case an antenna rod or rod array, is demonstrated. Thermal considerations arising from the dense integration of photonic and electronic components and the resulting concentrated heat load are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.