SignificancePost-burn scars and scar contractures present significant challenges in burn injury management, necessitating accurate evaluation of the wound healing process to prevent or minimize complications. Non-invasive and accurate assessment of burn scar vascularity can offer valuable insights for evaluations of wound healing. Optical coherence tomography (OCT) and OCT angiography (OCTA) are promising imaging techniques that may enhance patient-centered care and satisfaction by providing detailed analyses of the healing process.AimOur study investigates the capabilities of OCT and OCTA for acquiring information on blood vessels in burn scars and evaluates the feasibility of utilizing this information to assess burn scars.ApproachHealthy skin and neighboring scar data from nine burn patients were obtained using OCT and processed with speckle decorrelation, Doppler OCT, and an enhanced technique based on joint spectral and time domain OCT. These methods facilitated the assessment of vascular structure and blood flow velocity in both healthy skin and scar tissues. Analyzing these parameters allowed for objective comparisons between normal skin and burn scars.ResultsOur study found that blood vessel distribution in burn scars significantly differs from that in healthy skin. Burn scars exhibit increased vascularization, featuring less uniformity and lacking the intricate branching network found in healthy tissue. Specifically, the density of the vessels in burn scars is 67% higher than in healthy tissue, while axial flow velocity in burn scar vessels is 25% faster than in healthy tissue.ConclusionsOur research demonstrates the feasibility of OCT and OCTA as burn scar assessment tools. By implementing these technologies, we can distinguish between scar and healthy tissue based on its vascular structure, providing evidence of their practicality in evaluating burn scar severity and progression.
Significance: Pulsatility is a vital characteristic of the cardiovascular system. Characterization of the pulsatility pattern locally in the peripheral microvasculature is currently not readily available and would provide an additional source of information, which may prove important in understanding the pathophysiology of arterial stiffening, vascular ageing, and their linkage with cardiovascular disease development.
Aim: We aim to confirm the suitability of speckle decorrelation optical coherence tomography angiography (OCTA) under various noncontact/contact scanning protocols for the visualization of pulsatility patterns in vessel-free tissue and in the microvasculature of peripheral human skin.
Results: Results from five healthy subjects show distinct pulsatile patterns both in vessel-free tissue with either noncontact or contact imaging and in individual microvessels with contact imaging. Respectively, these patterns are likely caused by the pulsatile pressure and pulsatile blood flow. The pulse rates show good agreement with those from pulse oximetry, confirming that the pulsatile signatures reflect pulsatile hemodynamics.
Conclusions: This study demonstrates the potential of speckle decorrelation OCTA for measuring localized peripheral cutaneous pulsatility and defines scanning protocols necessary to undertake such measurements. Noncontact imaging should be used for the study of pulsatility in vessel-free tissue and contact imaging with strong mechanical coupling in individual microvessels. Further studies of microcirculation based upon this method and protocols are warranted.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.