A relation between vectorial source structure and coherence-polarization of the fluctuating field is established. This
relation connects the source structure to the degree of coherence by Fourier relation, and this is extension of the van
Cittert-Zernike theorem to the vectorial regime. Experimental verification of the proposed theorem is presented by
making use of space averages as replacement of ensemble averages for Gaussian stochastic field. Both experimental and analytical results are obtained for different polarized sources, and good agreements between two justify use of space average as replacement of ensemble average in the spatially fluctuating field.
A uniformly polarized optical vortex (OV) entering a birefringent crystal is known to unfold into complex polarization structures due to the separation of ordinary and extraordinary rays. The interplay between the topological structures in scalar and vector optics has been studied at the output of finite-length crystals. But the polarization transformation near the unfolding point where the beam initially enters the crystal has not been observed so far. In this paper, we experimentally investigate the spatial polarization structure very near the unfolding point of a uniformly polarized OV beam propagating in a birefringent crystal by constructing a birefringent interferometer. The unfolding point is reconstructed by folding back the two separated beams into a single beam using another identical birefringent crystal, resulting in a birefringent interferometer of Mach-Zehnder type. Small rotation of the second crystal produces output beams with varying separation near the unfolding point. The spatial polarization structure of the output beam is investigated by measuring the Stokes parameters. Such understanding of the connection between defects of scalar optics and vector optics through birefringence will help to shape the spatial polarization states of laser beams for various spectroscopic and microscopic applications.
We present experimental results on the effect of incident beam polarization on the spectral and polarization
characteristics of the output spectrum due to a single filament generated in BK7 glass using focused femtosecond laser
pulses. It is observed that the spectral characteristics of the output spectrum are different both in the spectral content as
well as the peak wavelength of the spectrum due to the two input laser polarizations (linear and circular). The
polarization properties of the output spectrum due to a single filament for the two polarizations have also been studied.
We report the synthesis of polystyrene (PS) nanospheres through emulsion polymerization and fabrication of
three dimensional PS photonic crystals (PhCs) with good crystalline quality using vertical deposition method. The
reflection and transmission spectral characteristics of the PhCs fabricated from the pure and dye doped PS
nanospheres are compared.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.