An experimental method for remitted photon path length measurements in scattering media has been developed and tested on human skin and skin neoplasms, skin phantoms and cell cultures. The photon time-of-flight (PTOF) measurement method was used in this study, where the photon travel time was converted into path length. Remitted light signals were obtained using a picosecond broadband laser and a set of narrowband interference filters in spectral rang 520 – 760 nm. Five different distances of 1, 8, 12, 16 and 20 mm between the source and detector fibers were used. Measurements were performed at different wavelengths and distance combinations; they were taken from human skin and skin malformations, agar-based phantoms with different concentrations of intralipid and hemoglobin, and from cell cultures (DC3F, B16/F10). Parameters related to the remitted photon mean path length will be presented and analyzed.
To explore challenges for further improvement of diagnostic performance, a project aimed at development of technology for tri-modal skin imaging by combining multispectral, fluorescence lifetime and Raman band imaging was initiated. In this study, each of the mentioned imaging modalities has been preliminary tested and updated. Four different multispectral imaging devices were tested on color standards. Picosecond laser-excited fluorescence lifetime imaging equipment was examined on ex-vivo skin samples. Finally, a new Raman spectroscopy setup with 785 nm laser was launched and tested on cell cultures and ex-vivo skin. Advantages and specific features of the tri-modal skin imaging are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.