Significance: Multispectral imaging enables mapping of chromophore content changes in skin neoplasms, which helps to diagnose a pathology. Different types of light sources can be used for the imaging. Design of laser-based illuminators is more complicated and, consequently, they are more expensive than LED-based illuminators. On the other hand, spectral line illumination has the advantage of less complicated calculations, since only the discrete maximum wavelengths need to be considered. Spectral band and spectral line approaches for multispectral skin diagnostics have not been compared so far. This can help to evaluate the accuracy and effectiveness of both approaches.
Aim: To compare two specific illumination modalities—spectral band and spectral line illumination—from the point of performance for mapping of in vivo skin chromophores.
Approach: Three spectral images of the same skin malformations were captured by a smartphone RGB camera with two different add-on illuminators comprising LED emitters and laser emitters, respectively. Five types of benign skin neoplasms were included in our study. Concentrations of skin melanin, oxy- and deoxy-hemoglobin at image pixel groups were calculated using the Beer–Lambert law.
Results: Skin chromophore maps and statistical analysis of mean concentrations’ changes in the neoplasms compared to the surrounding skin are presented and discussed. The data of the laser emitters led to significantly higher (∼10 times) increase of the oxy-hemoglobin values in vascular neoplasms and much lower deoxy-hemoglobin values, if compared to the data obtained by the LED emitters.
Conclusions: Analysis of the obtained chromophore distribution maps and concentration variations in neoplasms led to conclusion that the spectral line illumination approach is more appropriate for this application. Considering only the peak wavelengths of illumination spectral bands leads to essentially different results if compared to those obtained by spectral line illumination and may cause misinterpretations in the clinical assessment of skin neoplasms.
Skin chromophore maps can be used for assessment of various skin malformations and early cancer diagnostics. Commercially available devices are bulky and expensive.
We present two portable proof-of-concept device prototypes for multi-spectral laser line imaging with three (448 nm, 532 nm and 659 nm) and four (450 nm, 523 nm, 638 nm and 850 nm) wavelength laser illumination. Laser modules and special optics that ensure uniform light distribution over the region of interest have been exploited.
Skin chromophore maps were calculated using Beer-Lambert law, considering light scattering properties in the skin and including photon path length evaluated from the directly measured photon-time-of-flight signals. Chromophore concentrations in the lesion are compared to the surrounding healthy skin.
In vivo measurement results were compared with the results obtained from agar-based multi-layered skin phantoms which mimic vascular and pigmented skin lesions.
An experimental method for remitted photon path length measurements in scattering media has been developed and tested on human skin and skin neoplasms, skin phantoms and cell cultures. The photon time-of-flight (PTOF) measurement method was used in this study, where the photon travel time was converted into path length. Remitted light signals were obtained using a picosecond broadband laser and a set of narrowband interference filters in spectral rang 520 – 760 nm. Five different distances of 1, 8, 12, 16 and 20 mm between the source and detector fibers were used. Measurements were performed at different wavelengths and distance combinations; they were taken from human skin and skin malformations, agar-based phantoms with different concentrations of intralipid and hemoglobin, and from cell cultures (DC3F, B16/F10). Parameters related to the remitted photon mean path length will be presented and analyzed.
Agar-based skin phantoms with different thicknesses and hemoglobin concentration were evaluated for diagnostics of skin lesions by RGB imaging. Scattering properties of the phantoms were simulated using intralipid, absorption properties – using lyophilized powder of human hemoglobin. RGB images of phantoms were captured by self-developed laboratory made devices. The algorithm for calculation of chromophore concentrations are based on Beer-Lambert law and includes the photon path length evaluated from the measured photon-time-of-flight signals. Optical properties and chromophore concentration maps of phantoms obtained from RGB images were analyzed. The influence of chromophore concentration on scattering and absorption, photon path length and chromophore maps are discussed.
To explore challenges for further improvement of diagnostic performance, a project aimed at development of technology for tri-modal skin imaging by combining multispectral, fluorescence lifetime and Raman band imaging was initiated. In this study, each of the mentioned imaging modalities has been preliminary tested and updated. Four different multispectral imaging devices were tested on color standards. Picosecond laser-excited fluorescence lifetime imaging equipment was examined on ex-vivo skin samples. Finally, a new Raman spectroscopy setup with 785 nm laser was launched and tested on cell cultures and ex-vivo skin. Advantages and specific features of the tri-modal skin imaging are discussed.
Skin-remitted picosecond laser pulses have been detected at variable input-output fiber distances (8 … 20 mm) in the spectral range 520-800 nm, with subsequent analysis of the pulse shape changes. Transfer functions representing the temporal responses of remitted photons to infinitely narrow δ-pulse excitation have been calculated. Parameters related to the photon path length in skin – input-output pulse peak delays, pulse FWHM, travel times of the “initial” photons and distributions of the remitted photon path lengths – are presented and analyzed. The measurement results are in general agreement with the photon propagation model expectations
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.