We describe a combination of liquid-jet microencapsulation and molding techniques to fabricate tissue-simulating phantoms that mimick functional characteristics of tissue oxygen saturation (StO2). Chicken hemoglobin (Hb) was encapsulated inside a photocurable resin by a coaxial flow focusing process. The microdroplets were cured by ultraviolet (UV) illumination to form Hb loaded polymersome microdroplets. The microdroplets were further freeze-dried to form semipermeable solid microcapules with an outer transparent polymeric shell and an inner core of Hb. The diameter of the microcapsules ranged from 50 to100 μm. The absorption spectrum of the microcapsules was measured by a UV/VIS spectrophotometer over a wavelength range from 400 nm to 1100 nm. To fabricate the tissue-simulating phantom, the Hb loaded microcapsules were dispersed in transparent polydimethylsiloxane (PDMS). The optical properties of the phantom were determined by an vertical double integrating sphere with a reconstruction algorithm. The experimental results showed that the tissue-simulating phantom exhibited the spectral characteristics closely resembling that of oxy-hemoglobin. The phantom had a long-term optical stability when stored in 4 ℃, indicating that microencapsulation effectively protected Hb and improved its shelf time. With the Hb loaded microcapsules, we will produce skin-simulating phantoms for quantitative validation of multispectral imaging techniques. To the best of the authors’ knowledge, no solid phantom is able to mimick living tissue oxygenation with good agreement. Therefore, our work provided an engineering platform for validating and calibrating spectral optical devices in biomedical applications.
Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.
Accurate characterization of absorption and scattering properties for biologic tissue and tissue-simulating materials enables 3D printing of traceable tissue-simulating phantoms for medical spectral device calibration and standardized medical optical imaging. Conventional double integrating sphere systems have several limitations and are suboptimal for optical characterization of liquid and soft materials used in 3D printing. We propose a vertical double integrating sphere system and the associated reconstruction algorithms for optical characterization of phantom materials that simulate different human tissue components. The system characterizes absorption and scattering properties of liquid and solid phantom materials in an operating wavelength range from 400 nm to 1100 nm. Absorption and scattering properties of the phantoms are adjusted by adding titanium dioxide powder and India ink, respectively. Different material compositions are added in the phantoms and characterized by the vertical double integrating sphere system in order to simulate the human tissue properties. Our test results suggest that the vertical integrating sphere system is able to characterize optical properties of tissue-simulating phantoms without precipitation effect of the liquid samples or wrinkling effect of the soft phantoms during the optical measurement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.