A coaxial projective imaging (CPI) module acquires surgical scene images from the local site of surgery, transfers them wirelessly to the remote site, and projects instructive annotations to the surgical field. At the remote site, the surgical scene images are displayed, and the instructive annotations from a surgical specialist are wirelessly transferred back to the local site in order to guide the surgical intervention by a less experienced surgeon. The CPI module achieves seamless imaging of the surgical field and accurate projection of the instructive annotations, by a coaxial optical path design that couples the imaging arm with the projection arm and by a color correction algorithm that recovers the true color of the surgical scene. Our benchtop study of tele-guided intervention verifies that the proposed system has a positional accuracy of better than 1 mm at a working distance ranging from 300 to 500 mm. Our
We propose a handheld projective imaging device for orthotopic projection of near-infrared fluorescence images onto target biological tissue at visible wavelengths without any additional visual aid. The device integrates a laser diode light source module, a camera module, a projector, an ultrasonic distance sensor, a Raspberry Pi single-board computer, and a battery module in a rugged handheld unit. It is calibrated at the detected working distance for seamless coregistration between fluorescence emission and projective imaging at the target tissue site. The proposed device is able to achieve a projection resolution higher than 314 μm and a planar projection bias less than 1 mm at a projection field of view of 58 × 108 mm2 and a working distance of 27 cm. Technical feasibility for projective imaging is verified in an
View contact details