This work introduces first time fabricated spun silica microstructured optical fiber (MOF) with inclusion of seven GeO2-doped capillaries, placed in the central part of MOF cross-section, and induced twisting up to 730 revolutions per meter. Part I discusses technological issues for manufacturing of described complicated twisted fiber optic structure, while Part II presents some results of test series, performed for successfully manufactured twisted MOF pilot samples with typical hexagonal geometry under hole radius 4.40 μm and pitch 9.80 μm, outer “telecommunication” diameter 125 μm, and center part, formed by seven hollow GeO2-doped ring cores with inner radius 2.50 μm, pitch 8.80 μm and refractive index difference Δn=0.030. Following measurements were performed: measurements of transmission spectra under various twisting order, far-field laser beam profiles, some attempts of fusion splicing of typical telecommunication optical fibers and fabricated MOF with insertion loss estimation, and spectral response measurements of both single and group WDM (Wavelength Division Multiplexing)-channels of commercially available telecom WDM-system under inclusion of 2 m length MOF into various spans of short-range lab fiber optic link.
This work presents overview of technological issues concerned with drawing of twisted silica microstructured optical fibers. We present results of drawing tower modifications with developed and verified technological modes, that provide fabrication of silica microstructured optical fibers with induced chirality up to extremely high twisting order of 800 revolutions per meter (rpm). Thus, a work package using the original designer technical solutions for upgrade the adapter for supplying overpressure to the cane holes of the microstructured optical fiber (MOF) was carried out. Hence, the target increase in the twisting speed in the cane feed unit to 2000 rpm is ensured while simultaneously target overpressure feeding to the cane holes, which prevents the hole collapsing in the process of MOF drawing. The reliability of the adapter design and the high reproducibility of the specified cross section structure for the MOF at lengths of more than 50 meters with a twist period of 500 rpm have been experimentally confirmed. For the first time in the Russian Federation, prototypes of "stable" chiral MOF lengths (more than 50 m) of a different configuration with a maximum induced twisting of 500 rpm and MOFs prototypes with structure stability at lengths of less than 50 m with a strongly induced chirality of up to 790 rpm were fabricated. The geometric patterns of these fibers are also presented in this work.
We developed and characterized luminescent temperature sensors with a simple construction based on YAG : Ln3 + (Ln = Nd, Yb, Ce) nanocrystals and silica multimode optical fibers. Lanthanide-doped nanocrystals 40 to 60 nm in size were synthesized in the form of powders using the modified Pechini method. The obtained materials exhibited high sensitivity of luminescence intensity to temperature variations at wavelengths of 550 nm (YAG : Ce3 + ), 1030 nm (YAG : Yb3 + ), and 1064 nm (YAG : Nd3 + ) in the temperature range 50°C to 600°C. Additionally, we offered a method to eliminate influence of vibration on accuracy of temperature measurements by adding SiO2 sol to powders after their synthesis in sensitive elements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.