We have studied a Si photonics non-mechanical beam steering device for LiDARs. We exploit a doubly periodic Si photonic crystal waveguide (PCW) with a collimator lens, which emits a single-peaked optical beam. Thanks to the slow light effect in the PCW, wide range beam steering can be obtained in the longitudinal direction with maintaining a small beam divergence by a small change of the wavelength and/or index of the PCW. However, due to the symmetric crosssection of the PCW, the emission occurs in both upward and downward directions, which causes a 3-dB loss in the transmission of the optical beam. The downward beam is partly reflected by the substrate, and the reflected beam interferes with the upward beam and modifies the far field pattern, which further increases the loss at particular beam angles. In LiDARs, this loss is repeated at the reception of returned light, resulting in a severe loss penalty. In this study, we investigated the unidirectional upward emission in some PCW structures with vertical asymmetries. We found theoretically that a shallow etched grating on top of the Si layer, which overlaps with the PCW holes significantly increases the upward emission. We fabricated such a device using Si photonics CMOS process and observed 2-8 times stronger upward emission as compared with that of the symmetric PCW. Furthermore, we integrated 32 PCWs in parallel configuration and selected one working PCW so that its relative position against a collimator lens is switched and the beam is steered in the lateral direction. We observed over 400×32 resolution points.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.