A powerful new inspection technology enables the excursion control of fast patterning processes. Full images of 300mm
wafers are captured and processed to extract CD uniformity information of contact hole and line-space patterns. Suitable
masking filters are applied to process and analyze the information from active logic and/or memory areas separately.
Characteristic process tool signatures can then be detected based on die, exposure field and wafer-level pattern variations.
Based on inspection times of a few seconds per wafer, rapid monitoring of 100% of processed wafers at full surface is
feasible. CD-imaging is demonstrated for the monitoring of key patterning process steps in gate formation. Use cases for
stand-alone, integrated and smart sampling strategies are discussed.
Resonant reflection filters -- also known as grating waveguide structures -- are characterised by a multilayer configuration including a substrate, waveguide layer and grating(s) at the top of and, in this investigation, also under the waveguide layer. For a specific wavelength at a specific angular and polarisation orientation an incident beam is partly diffracted, guided and rediffracted, leading to vanishing transmission due to destructive interference with the directly transmitted beam, while most of the light is reflected. Since this resonance is a guided mode phenomenon these devices can be used as tunable filters or dichroic elements (reflected wavelength as a function of incident angle) as long as the guided mode condition holds. In this experimental study the behaviour of ultrashort pulses of ~100 fs within structures with various grating depths and, therefore, different spectral resonance bandwidths was investigated under resonance conditions. Spectral and time-resolved measurements in transmission as well as reflection geometry revealed that the ultrashort pulses leaving the structures are time-bandwidth limited, i.e. the spectral bandwidth of the resonant filter determines the pulse length. Group velocity dispersion (GVD) has no important influence since the light is immediately rediffracted after having been coupled into the waveguide layer of the sample.
Submicron surface-relief gratings were fabricated in ultrathin dielectric films by F2-laser ablation. Projection mask imaging by a Schwarzschild objective applying nanosecond duration pulses from a high-resolution 157-nm optical processing system generated 780-nm-period gratings in various thin oxide layers. The grating modulation depths were controlled within tens of nanometers by applying suitable energy densities and number of pulses. Thus, high-resolution laser ablation proves to be a promising alternative approach to well-known lithographic methods for the fabrication of submicron-period gratings in thin films.
Such gratings are the most critical component of grating waveguide structures (GWS) that comprise of a substrate, a thin waveguide, and a grating layer in a planar multilayer structure. Interference effects in a GWS will provide high reflection efficiency under resonance conditions for an ideal grating with no absorption losses. The resonance spectral responses of the F2-laser ablated gratings have been investigated using an ultrashort-pulse titanium-sapphire laser. Their potential for optical applications will be shown and discussed. GWS are attractive for optical switches or modulators, narrow-band spectral filters, high reflectivity mirrors, bio-sensor chips and many other applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.