It is challenging to implement extreme ultraviolet (EUV) lithography for mass production because the demands for the EUV resist materials are very strict. Under such circumstances, it is important in EUV resist design to clarify the dissolution behavior of the resist film into alkaline developer. In particular, the dissolution in exposed area of resist films is one of the most critical processes. However, the details in dissolution process of EUV resist have not been investigated thus far. In this study, the dissolution of poly(4-hydroxystyrene) (PHS) polymer and PHS partially-protected with t-butoxycarbonyl group (t-BOC-PHS) with and without additives such as acid generator and amines was studied by using the quartz crystal microbalance (QCM) method. The dissolution behavior of thin films was investigated by varying the exposure dose and the acid generator concentration from the standpoint of a systematic understanding of the effects of each resist component on dissolution kinetics. The dissolution speed became slower with increase of TPS-tf concentration in PHS and t-BOC-PHS. It is important for the EUV resist design to take into account the concentration of undecomposed PAG.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.