A Fiber Bragg Grating (FBG) based force sensor with high-sensitivity and temperature compensation capability. It can be used to accurately measure the contact force (CF) between medical equipment and tissues or organs in minimally invasive surgery (MIS). To achieve temperature compensation, a novel design incorporating dual elastomer-based dual FBGs is employed, and its effectiveness is verified through finite element simulation. After temperature compensation, the developed sensor has a sensitivity of 54 pm/N, a resolution of 0.019 N, and a root-mean-square error (RMSE) of 0.064 N. The utilization of temperature disturbances for measuring distal contact force demonstrates a substantial enhancement compared to direct measurement methods. Additionally, in vitro experiments are conducted using a silicone vascular model, demonstrating the sensor’s capability to detect certain alterations in vascular pathways. Finally, a simulated palpation liver experiment confirmed that the designed force sensor can preliminary detect of the relative hardness of the tissue based on the magnitude of the CF. In vitro experiments have proved that the designed FBG force sensor has a practical value in MIS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.