We describe scientific objective and project status of an astronomical 6U CubeSat mission VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat). The scientific goal of VERTECS is to reveal the star-formation history along the evolution of the universe by measuring the extragalactic background light (EBL) in the visible wavelength. Earlier observations have shown that the near-infrared EBL is several times brighter than integrated light of individual galaxies. As candidates for the excess light, first-generation stars in the early universe or low-redshift intra-halo light have been proposed. Since these objects are expected to show different emission spectra in visible wavelengths, multi-color visible observations are crucial to reveal the origin of the excess light. Since detection sensitivity of the EBL depends on the product of the telescope aperture and the field of view, it is possible to observe it with a small but wide-field telescope system that can be mounted on the limited volume of CubeSat. In VERTECS mission, we develop a 6U CubeSat equipped with a 3U-sized telescope optimized for observation of the visible EBL. The bus system composed of onboard computer, electric power system, communication subsystem, and structure is based on heritage of series of CubeSats developed at Kyushu Institute of Technology in combination with high-precision attitude control subsystem and deployable solar array paddle required for the mission. The VERTECS mission was selected for JAXA-Small Satellite Rush Program (JAXA-SMASH Program), a new program that encourages universities, private companies and JAXA to collaborate to realize small satellite missions utilizing commercial small launch opportunities, and to diversify transportation services in Japan. We started the satellite development in December 2022 and plan to launch the satellite in FY2025.
The extragalactic background light (EBL) is the integrated emission from all objects outside of the Milky Way galaxy and is a crucial observational quantity in the broader study of the history of cosmic structures. In the nearinfrared EBL, there have been measurements of an emission component several times brighter than the cumulative light from extragalactic galaxies. This unknown radiation component has led to proposals for candidate source objects, such as first stars and galactic halo brown dwarfs. These source objects exhibit distinct radiation spectra in the visible wavelength. The VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat) project is focused on continuously observing the visible EBL using a wide-field small telescope on a 6U CubeSat. The primary characteristic of this telescope is its high-throughput (SΩ > 10−6 m2sr). The 3U-sized optical telescope onboard this satellite consists of a lens optics with a total field of view of 6° × 6°, pixel field of view of 11” × 11”, a highly sensitive and low-noise detector module, and a baffle to eliminate stray light from the Sun and Earth. Additionally, color filters divide the wavelength range from 400 to 800 nm into four bands. Our observation strategy involves capturing 60-second exposure images while shifting the observed field by 3° increments and stacking the acquired images to perform photometry in the four bands. Thus far, most of the telescope design has met the required specifications, and the project is currently advancing towards the production of an engineering model. This project was selected in the JAXA-SMASH and is currently progressing in satellite development with a planned launch in the 2025 fiscal year. In this presentation, we will report on the strategy for observing the visible EBL, the progress in the development of the optical telescope, and the future plans.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.