The thermoelectric generator (TEG) is commonly used to harvest or scavenge the remnant energy from waste heat sources, such as automotive exhaust systems, cooling line of power plants, ocean temperature difference, human body, and industrial processes. The performance of TEG depends on the thermoelectric material and its structural configuration. To obtain the maximum power from TEG module, the optimal design of heat exchanger is required to realize the full potential of power generating system. The internal structure of heat exchanger plays a critical role to determine the efficiency of TEG by enhancing heat transfer between the hot and cold sides of the TEG module. We studied the effect of internal fin structure in heat exchanger with hot water feeding condition to obtain the best performance of TEG module array by using computational simulations and compared with the experimental results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.