Maintenance of power equipment is of great significance to ensure the safety and reliability of power equipment. This paper focuses on detecting missing pins of power equipment using Unmanned Aerial Vehicle (UAV) acquired images. We proposed a detection method based on image color histogram and scale invariant feature transform (SIFT). The first step calculates the H-S color histogram of screw image, utilizing histogram back projection method to obtain candidate regions of screw image in the to-be-matched image, applied Bhattacharyya distance as a measurement to compare the similarity of two histograms. Then, the SIFT feature is extracted from the screw image and the key points are matched with the SIFT feature of the candidate regions to detect the screws. Finally, this paper designs a method which uses convolutional neural network to judge whether the screw misses the pin. Experiments show that the proposed algorithm of missing pins detection based on UAV image can achieve competitive results to detect the defects in special scenes, and has good robustness, which satisfies the real-time and accuracy requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.