This paper describes a novel, wearable, battery powered ultrasound applicator that was evaluated as a therapeutic tool for healing of chronic wounds, such as venous ulcers. The low frequency and low intensity (~100mW/cm2) applicator works by generating ultrasound waves with peak-to-peak pressure amplitudes of 55 kPa at 20 kHz. The device was used in a pilot human study (n=25) concurrently with remote optical (diffuse correlation spectroscopy - DCS) monitoring to assess the healing outcome. More specifically, the ulcers’ healing status was determined by measuring tissue oxygenation and blood flow in the capillary network. This procedure facilitated an early prognosis of the treatment outcome and – once verified - may eventually enable customization of wound management. The outcome of the study shows that the healing patients of the ultrasound treated group had a statistically improved (p<0.05) average rate of wound healing (20.6%/week) compared to the control group (5.3%/week). In addition, the calculated blood flow index (BFI) decreased more rapidly in wounds that decreased in size, indicating a correlation between BFI and wound healing prediction. Overall, the results presented support the notion that active low frequency ultrasound treatment of chronic venous ulcers accelerates healing when combined with the current standard clinical care. The ultrasound applicator described here provides a user-friendly, fully wearable system that has the potential for becoming the first device suitable for treatment of chronic wounds in patient's homes, which - in turn - would increase patients’ compliance and improve quality of life.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.