Interactions between trapped microspheres have been studied in two geometries so far: (i) using line optical tweezers and (ii) in traps using two counter propagating laser beams. In both trap geometries, the stable inter bead separations have been attributed to optical binding. One could also trap two such beads in a single beam Gaussian laser trap. While there are reports that address this configuration through theoretical or simulation based treatments, there has so far been no detailed experimental work that measures the interactions.
In this work, we have recorded simultaneously the fluctuation spectra of two beads trapped along the laser propagation direction in a single Gaussian beam trap by measuring the back scattered signal from the trapping and a tracking laser beam that are counter propagating . The backscattering from the trapping laser monitors the bead encountered earlier in the propagation path. The counter propagating tracking laser, on the other hand, is used to monitor the fluctuations of the second bead. Detection is by using quadrant photo detectors placed at either end. The autocorrelation functions of both beads reveal marked departures from that obtained when there is only one bead in the trap. Moreover, the fall-off profiles of the autocorrelation indicates the presence of more than one relaxation time. This indicates a method of detecting the presence of a second bead in a trap without directly carrying out measurements on it. Further, a careful analysis of the relaxation times could also reveal the nature of interactions between the beads.
A microscopic object finds an equilibrium orientation under a laser tweezer such that a maximum of its volume lies in the region of highest electric field. Furthermore, birefringent microscopic objects show no rotational diffusion after reorienting under a linearly polarized optical trap and also are seen to follow the plane of polarization when the latter is changed using a half wave plate. We observe that a healthy human Red Blood Cell (RBC) reproduces these observations in an optical tweezer, which confirms it to be birefringent. Polarization microscopy based measurements reveal that the birefringence is confined to the cell’s dimple region and the mean value of retardation for polarized green light (λ = 546nm) is 9 ± 1.5nm. We provide a simple geometrical model that attributes the birefringence to the nature of arrangement of the phospholipid molecules of the bilayer. This predicts the observed variation in the measured birefringence, from the dimple to the rim of the cell which we further show, can serve to demarcate the extent of the dimple region. This points to the value of birefringence measurements in revealing cell membrane contours. . We extend this technique to understand the birefringence of a chicken RBC, an oblate shaped cell, wherein the slow axis is identified to be coincident with the long axis of the cell. Further, we observe the birefringence to be confined to the edges of the cell. Experiments to probe the optomechanical response of the chicken RBC are in progress.
We report here on studies of reorientation of human red blood cells (RBCs) in an optical trap. We have measured the time required, t re , for the plane of the RBC entering the optical trap to undergo a 90-deg rotation to acquire an edge on orientation with respect to the beam direction. This has been studied as a function of laser power, P , at the trap center. The variation of t re with increasing P shows an initial sharp decrease followed by a much smaller rate of further decrease. We find that this experimentally measured variation is not in complete agreement with the variation predicted by a theoretical model where the RBC is treated as a perfectly rigid circular disk-like body. We argue that this deviation arises due to deformation of the RBC. We further reason that this feature is dominated by the elastic behavior of the RBC membrane. We compare the studies carried out on normal RBCs with RBCs where varying conditions of membrane stiffness are expected. We propose that the value of energy used for maximum deformation possible during a reorientation process is an indicator of the membrane elasticity of the system under study.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.