Hand tracking is becoming more and more popular in the field of human-computer interaction (HCI). A lot of studies in this area have made good progress. However, robust hand tracking is still difficult in long-term. On-line learning technology has great potential in terms of tracking for its strong adaptive learning ability. To address the problem we combined an on-line learning technology called on-line boosting with an off-line trained detector to track the hand. The contributions of this paper are: 1) we propose a learning method with an off-line model to solve the drift of on-line learning; 2) we build a framework for hand tracking based on the learning method. The experiments show that compared with other three methods, the proposed tracker is more robust in the strain case.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.