In light of the efforts to improve the performance of micromachined gyroscopes, this paper presents an investigation of
energy loss mechanisms in a SOI-based tuning-fork gyroscope, since these loss mechanisms dictate the value of the
mechanical Quality factor (Q) that has been identified as a critical determinant for achieving high-precision
performance. The numerical models of thermoelastic damping (TED) and anchor loss in the tuning-fork gyroscope
design are created in a FEM software, ANSYS/Multiphysics, according to a thermal-energy method and a separationand-
transfer method, respectively. The calculated results indicate that thermoelastic damping is the dominant loss while
anchor loss is negligible for the gyroscope design. In order to validate the created models, an experimental study on the
Q of the SOI-based tuning-fork gyroscope is consequently conducted. Comparison between the calculated results and the
measured data not only validates the numerical models, but also demonstrates the significant effect of fabrication process
on the final achievable Q values of the fabricated gyroscopes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.