Yb:YAG ceramic laser materials, fabricated by vacuum sintering technology, were
optically investigated within different laser set-up configurations. The established nanopowder
vacuum sintering process shows good potential for mass fabrication of multicomposite
ceramic laser materials with different dopant concentrations. 5%, 7%, 10%
single dopant and 7%/20% core-cladding multi-composite Yb:YAG materials were
fabricated and investigated. The highest measured slope efficiency, for the composite
ceramic laser materials was 81%, at 1030 nm emission wavelength, similar to Yb:YAG
single crystals.
We have investigated a relationship among the bulk laser-induced damage threshold (LIDT) and YAG ceramics
with various structural defects. The correlation of scattering defect density and laser damage resistance was clearly
observed. A high-quality YAG ceramic having a low-scattering density showed a higher LIDT than that of a low-quality
YAG ceramic. Laser damage threshold (LIDT) of high-quality YAG ceramic was almost the same as that of a single
crystal. In addition, the high-quality Nd:YAG ceramics with
low-defect density showed an excellent oscillation
efficiency which was comparable to that of a single crystal. Thus, high-quality YAG ceramic with low-defect density is
more reliable as a material which is highly resistant to laser damage.
Edge-pumping Nd:YAG laser gain media is a convenient method to couple pump power into a laser cavity. A difficulty with this geometry is that for uniformly doped materials, pump power deposited near the edge of the gain medium cannot be efficiently extracted by a diffraction-limited beam. However, ceramic Nd:YAG with smooth changes in neodymium doping level (doping profiles) can now be fabricated to ameliorate this problem. A slab engineered with a doping profile that has a higher concentration of Nd in the center, and less at the edges, would allow more pump power to be efficiently extracted by a diffraction-limited laser beam. Yet this solution poses its own problem because variations in Nd concentration introduce optical path length distortions that can significantly reduce beam quality. The variations in optical path length are predominantly from changes in the refractive index of the host due to Nd doping and spatially varying temperatures. A genetic-algorithm-based approach is presented that balances improvement in mode-overlap between excited state distribution and the signal laser beam against optical path length distortions. A doping profile was found for an edge-pumped, zig-zag slab amplifier that is expected to yield a 39% improvement in extracted power delivered into a diffraction-limited spot compared to a uniformly doped slab.
We report the first demonstration of polycrystalline Nd:YAG (Y3Al5O12), and Nd-doped YAG single crystal with almost perfect pore-free structure by advanced ceramic processing. The laser conversion efficiency of pore-free polycrystalline Nd and Yb doped ceramics is extremely high, and their optical qualities are comparable to that of commercial high quality Nd:YAG single crystal. We have succeeded also in the fabrication of Nd:YAG single crystal, which can be used for laser oscillation, by solid-state reaction method. Laser oscillation efficiency was very low when pores were remained inside single crystal, however the laser oscillation efficiency of pore-free Nd:YAG single crystal was slightly higher than that of polycrystalline Nd:YAG ceramics having high optical quality. From this fact, it was recognized that the optical scattering occurs mainly at the residual pores inside the Nd:YAG ceramics, and the scattering at the grain boundary is very little. In addition, we confirmed that Nd heavily-doped YAG single crystal can be fabricated by sintering method. We have demonstrated the fabrication of composite ceramic with complicated structures without the needs of precise polishing and diffusion bonding. Advanced ceramic processing, which enables design flexibility of laser element, presented in this work is important in the development of high performance laser (high efficiency, high beam quality and high output energy etc.) Moreover, we have recently developed polycrystalline ceramic fiber laser first in the world, and achieved over 8W output per unit length of the fiber.
We report the first demonstration of polycrystalline Nd-doped YAG ceramics with almost perfect pore-free structure and Nd-doped YAG single crystal by advanced ceramic processing. The laser conversion efficiency of pore-free polycrystalline Nd:YAG ceramics is extremely high and its optical quality is comparable to that of commercial high quality Nd:YAG single crystal. Moreover, we have succeeded also in fabrication of Nd:YAG single crystal, which enables laser oscillation, by solid-state reaction method. Laser oscillation efficiency was very low when the pores were remained inside single crystal, however the laser oscillation efficiency of pore-free Nd:YAG single crystal was slightly higher than that of polycrystalline Nd:YAG ceramics having grain boundaries. From this fact, it was found that the optical scattering inside the Nd:YAG ceramics occurs mainly at the residual pores and the scattering at the grain boundary is very little. In addition, we confirmed that high concentration Nd:YAG single crystal can be fabricated by sintering method. Applying the above single crystallization technology by sintering method, we have demonstrated the fabrication of layer-by-layer single crystal composite and micron size spherical single crystal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.