The multispectral high-resolution imaging system is composed of four wide-spectrum cameras, which can detect targets in the visible, short-wave infrared, medium-wave infrared and long-wave infrared spectrum simultaneously. In order to reduce the size of the system, the four wide-spectrum cameras use the same telescope. To achieve operating wavelengths covering four wavebands, the telescope uses a fully reflective design with a coaxial aspherical surface with a hole in the center of the primary mirror. If aberration-free testing is used, the central aperture will occur, resulting in incomplete aperture of surface shape detection. Thus, in this paper, a compensator is designed which can achieve the whole aperture of surface testing without centralized obscuration. At the same time, the impact of the misalignment of compensator in the optical path during the test is analyzed. The optical testing path adopts infinite conjugate working distance to reduce one adjustment amount of compensator. And the first surface of compensator is coordinated with the interferometer to adjust the angle of compensator quickly and accurately, which further reduces the measurement error introduced by the optical testing path. The design of the compensator can realize the control of sensitive misalignment, reduce the surface measuring error caused by the compensator misalignments, and eventually reduce the precise processing error.
The national major scientific research instrument project: “The accurate infrared solar magnetic field measurements system” (AIMS) is under construction. The figure of the primary of the AIMS can be measured using a computer generated hologram (CGH) test during the polishing process, however, a distortion correction procedure is needed to mapping the coordinates of the mirror and the pixels of fringes due to the large distortion exists in the CGH test configuration, and the mapping relationship need to be re-calibrated after the primary mirror was reassembled, which makes the test process cumbersome. In this paper, a sub-aperture stitching equipment was established, which uses a two\dimensional guide that can move a 450mm reference flat mirror to any position that can cover the aperture of the primary mirror. The surface shape requirement of the 450 mm flat mirror was given by Monte-Carlo analysis and further the figure was tested by using Ritchey-Common technique. Furthermore, a sub-aperture stitching test system was established and a modified simultaneous fitting algorithm was proposed to stitch the sub-aperture wavefront together, the correctness of the technique was verified by a full aperture figure test experiment. Finally, we applied the developed approach to the site test of figure of the AIMS primary mirror.
AIMS is an infrareds optical system for the accurate measurement of solar magnetic field, which is a national major scientific research project currently developed. The guiding optical system of AIMS is an off-axis Gregorian system, due to the designed minimum angle between the optical axis of the optical system and horizontal plane is 14.036°, a sub-aperture stitching test approach is developed to test the wavefront of the system. That makes the process of precision alignment of the system very difficult and laborious. Therefore, we developed a two-step alignment approach that based on merit function regression method, the developed method can make alignment of AIMS guiding optical system efficiency and accuracy. In this paper, we explain the detailed two-step alignment method and apply it to the real alignment of AIMS guiding system. Aided with sub-aperture stitching measurements, the AIMS guiding system is aligned and the results show that in 0.076λrms wavefront error in effective aperture was achieved.
SVOM-VT has entered the initial phase development stage, and encircled energy is its key performance index. In the development process, it is necessary to determine the encircled energy of the optical lens stage and the system stage. The image recording of a CCD detector includes two imaging processes: one is the pixel integration imaging process, in which the output signal of each pixel is proportional to the area integration of the incident light intensity on the surface of the pixel; the other is the discrete sampling process, in which the continuous graphical object is sampled discretely at the sampling interval of the center distance of the pixel. Based on the data of SVOM-VT, the effect of CCD under-sampling on the encircled energy of detection camera is characterized by simulation and test. Imaging process of CCD pairs of scattered speckles from the lens is a two-dimensional discrete sampling process, as well as the sampling process of discrete signals. This process will lead to low-frequency noise (under-sampling noise) in the sampling of high-frequency signals by CCD detectors, resulting in spectrum aliasing (low-frequency signal distortion) of image signals. Intuitively, the original image is broadened. When the sampling density is increased, this will not be the case.
For a wavefront tested by Shack-hartmann wavefront sensor, the zonal integration method is often chosen by researchers to solve the reconstruction problem. But it has shown an unacceptable result when the phase derivative data is distributed on an unconnected domain, the obtained wavefront will contain different piston error on each subdomain. Therefore, a new zonal wavefront estimation algorithm is proposed to deal with this drawback, which uses a simultaneous fit method to correct piston error of each subdomain. The validity of the algorithm is verified by a numerical simulation and experimental results.
Dues to its large capacity of information, super-speed transmission and high stability, laser communication has become a popular kind of satellite communication technology. Different from other kinds of communication technology, laser communication terminals (LCT) consists of optical systems with high imaging quality, high precise and rapid tracking systems. Testing the LCT on land is necessary to ensure its performance on the satellite. This article introduces a LCT-test and evaluation station (LCT-TES) in the laboratory. The LCT-TES is a high quality optical system providing laboratory measurements of the key characteristics of LCT, such as power testing, energy distribution of light spot in the far field, and the angle of beam divergence. The test precision of LCT-TES is also analyzed in this paper.
In order to ensure the on-orbit performance of space laser communication terminal(SLCT), the optical performance test under thermal vacuum conditions must be completed on the groud. In this paper, according to the requirements of SLCT, thermal vacuum optical performance test system was designed and developed. Its main testing capabilities include the divergence angle, polarization state, wave aberration, transmission power. Several SLCTs were tested by the system, the results show that the overall performance of the test system is stable and the thermo-optical test of SLCT can be completed well.
Absolute measurement with Phase Measuring Deflectometry (PMD) is gaining importance in industry, but the accuracy of deflectometry metrology is strongly influenced by the level of calibration. In order to improve the accuracy of the PMD to a level where it competes with interferometry, a reference calibration process is commonly carried out to carefully calibrate the systematic errors. The systematic errors obtained by measuring a high quality reference surface can be subtracted from the measurement of a test surface to get its actual surface, however, it could introduce the surface error of reference into the measurement. To alleviate this problem, this paper introduces a technique named “rotational shear phase measuring deflectometry”, this technique have the ability of removing the rotationally asymmetric systematic errors from the test surface without using a reference surface. The validity of this technique has been demonstrated by simulation and our experimental results.
Traditional slanted knife-edge method experiences large errors in the camera modulation transfer function (MTF) due to tilt angle error in the knife-edge resulting in non-uniform sampling of the edge spread function. In order to resolve this problem, a non –uniform sampling knife-edge method for camera MTF measurement is proposed. By applying a simple direct calculation of the Fourier transform of the derivative for the non-uniform sampling data, the camera super-sampled MTF results are obtained. Theoretical simulations for images with and without noise under different tilt angle errors are run using the proposed method. It is demonstrated that the MTF results are insensitive to tilt angle errors. To verify the accuracy of the proposed method, an experimental setup for camera MTF measurement is established. Measurement results show that the proposed method is superior to traditional methods, and improves the universality of the slanted knife-edge method for camera MTF measurement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.