In order to meet the aviation’s and machinery manufacturing’s pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.
A new pose measurement system based on orthogonal beam splitting imaging is proposed in this paper to solve the contradictions between the measurement accuracy and measurement speed in the existing pose measurement method of monocular or binocular vision with multi-linear CCDs. In the system, monocular object lens with beam splitting structure and two linear CCDs are combined to compose the pose measurement sensor. Monocular camera helps the system gain a large field of view. And the two orthogonally placed linear CCDs are equal to one array CCD. Furthermore, linear CCD possesses the advantage of high-resolution imaging, high-speed data capturing and high-efficiency data processing as compared to an array one. The key work of this paper lies in designing the optical structure of the sensor, calibrating the parameters of the camera corresponding to its model, and solving pose of the object by corresponding position algorithm. The experimental results prove that the measurement accuracy (2%) of orthogonally-splitting-imaging pose sensor can be achieved. Hence, this system meets the high-speed and high-precision measurement requirements in wide space and can be applied to pose measurement in aerospace and vehicle field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.