A 16-channel optical transmitter chip with a digital transmission capacity up to 1.6 Tb/s has been demonstrated. In this chip, a 16-wavelength III–V DFB laser array (MLA), a silicon Mach-Zehnder interferometer (MZI) modulator array and a 16-channel fiber array are hybrid integrated by photonic wire bonding (PWB) technique. The MLA based on reconstruction-equivalent-chirp (REC) technique proves a good wavelength spacing uniformity of all wavelengths. Each unit laser with 1.2 mm cavity length in the MLA exhibits good single-longitudinal-mode operation with the output power over 18 dBm at an injection current of 300 mA. Spectral measurements show the channels coincide well with the designed 200 GHz spacing, with wavelength deviations within a range of ±0.2 nm. Based on PWB technique, three chips mentioned above are integrated optically on one Wu-Cu substrate as a 16-channel optical transmitter. The largest output power of optical transmitter is 1.5 mW and all channels still keep good single mode outputs after PWB integration. The tested modulation speed of each channel is up to 100 Gb/s, which implies the total transmission capacity of this device is 1.6 Tb/s.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.