The MANTIS (Monitoring Activity of Nearby sTars with uv Imaging and Spectroscopy) 16U CubeSat mission, led by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, plans to characterize the high-energy stellar radiation that drives atmospheric photochemistry and escape on extrasolar planets by conducting simultaneous observations of exoplanet host stars at extreme-ultraviolet (100–1200A; EUV), far-ultraviolet (1300–2200A; FUV), near-ultraviolet (2200–3500A; NUV), and visible (3500–10000A; VIS) wavelengths. The science payload's two-telescope design enables simultaneous coverage over the entire UV passband and the first EUV astrophysics capability in over 20 years. An 8.5cm diameter grazing incidence telescope feeds a low-resolution EUV spectrograph while a 14x9cm rectangular Cassegrain telescope feeds a dichroic beamsplitter to divide the light into both an NUV/VIS and FUV channel. The MANTIS design, detector systems, spacecraft bus and mission operations build off of the heritage of the CUTE and SPRITE CubeSats developed by the MANTIS team. This proceeding overviews the design of the MANTIS instrument and general mission concept.
What is the amount of ionizing energy incident on exoplanet atmospheres from their host stars? What is the relationship between white-light flares and this ionizing energy? These are key questions required to link our current archive of hundreds of stellar whitelight flares to the ionizing radiation released during them, and the ramifications of those flares on the survival of exoplanetary atmospheres, particularly for planets orbiting within the habitable zones of low-mass stars. The Small NASA Optical Ultraviolet Telescope (SNOUT) is a proposed Pioneers mission comprised of two co-pointing telescopes: one optimized for EUV wavelengths (comprised of three separate EUV segments) and one for visible wavelengths. SNOUT is designed to measure the quiescent extreme-UV (EUV) emission for 30 mow-mass stars (0.3 - 1 solar masses), covering a range of ages, in three EUV bandpasses. The combined instrument is housed in an ESPA-Grande spacecraft and will launch into low Earth orbit for a one-year baseline mission. SNOUT has a substantial educational and early-career mentoring component; early-career scientists and engineers comprise more than half of the team, including key leadership roles.
The Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) mission is an astrophysics Small Explorer employing ultraviolet spectroscopy (EUV: 80 to 825 Å and FUV: 1280 to 1650 Å) to explore the high-energy radiation environment in the habitable zones around nearby stars. ESCAPE provides the first comprehensive study of the stellar EUV and coronal mass ejection environments that directly impact the habitability of rocky exoplanets. In a 20-month science mission, ESCAPE will provide the essential stellar characterization to identify exoplanetary systems most conducive to habitability and provide a roadmap for NASA’s future life-finder missions. ESCAPE accomplishes this goal with roughly two-order-of-magnitude gains in EUV efficiency over previous missions. ESCAPE employs a grazing incidence telescope that feeds an EUV and FUV spectrograph. The ESCAPE science instrument builds on previous ultraviolet and x-ray instrumentation, grazing incidence optical systems, and photon-counting ultraviolet detectors used on NASA astrophysics, heliophysics, and planetary science missions. The ESCAPE spacecraft bus is the versatile and high-heritage Ball Aerospace BCP-Small spacecraft. Data archives will be housed at the Mikulski Archive for Space Telescopes.
The Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) mission is an astrophysics Small Explorer employing ultraviolet spectroscopy (EUV: 80 - 825 Å and FUV: 1280 - 1650 Å) to explore the high-energy radiation environment in the habitable zones around nearby stars. ESCAPE provides the first comprehensive study of the stellar EUV and coronal mass ejection environments which directly impact the habitability of rocky exoplanets. In a 20 month science mission, ESCAPE will provide the essential stellar characterization to identify exoplanetary systems most conducive to habitability and provide a roadmap for NASA's future life-finder missions. ESCAPE accomplishes this goal with roughly two-order-of-magnitude gains in EUV efficiency over previous missions. ESCAPE employs a grazing incidence telescope that feeds an EUV and FUV spectrograph. The ESCAPE science instrument builds on previous ultraviolet and X-ray instrumentation, grazing incidence optical systems, and photon-counting ultraviolet detectors used on NASA astrophysics, heliophysics, and planetary science missions. The ESCAPE spacecraft bus is the versatile and high-heritage Ball Aerospace BCP-Small spacecraft. Data archives will be housed at the Mikulski Archive for Space Telescopes (MAST). ESCAPE is currently completing a NASA Phase A study, and if selected for Phase B development would launch in 2025.
The Normal-incidence Extreme Ultraviolet Photometer (NExtUP) is a smallsat mission concept designed to measure the EUV radiation conditions of exoplanet host stars, and F-M type stars in general. EUV radiation is absorbed at high altitude in a planetary atmosphere, in the exosphere and upper thermosphere, where the gas can be readily heated to escape temperatures. EUV heating and ionization are the dominant atmospheric loss drivers during most of a planet’s life. There are only a handful of accurately measured EUV stellar fluxes, all dating from Extreme Ultraviolet Explorer (EUVE) observations in the ‘90s. Consequently, current models of stellar EUV emission are uncertain by more than an order of magnitude and dominate uncertainties in planetary atmospheric loss models. NExtUP will use periodic and aperiodic multilayers on off-axis parabolic mirrors and a prime focus microchannel plate detector to image stars in 5 bandpasses between 150 and 900°A down to flux limits two orders of magnitude lower than reached by EUVE. NExtUP may also accomplish a compelling array of secondary science goals, including using line-of-sight absorption measurements to understand the structure of the local interstellar medium, and imaging EUV emission from energetic processes on solar system objects at unprecedented spatial resolution. NExtUP is well within smallsat weight limits, requires no special orbital conditions, and would be flown on a spacecraft supplied by MOOG Industries. It draws on decades of mission heritage expertise at SAO and LASP, including similar instruments successfully launched and operated to observe the Sun.
The long-term stability of exoplanetary atmospheres depends critically on the extreme-ultraviolet (EUV) flux from the host star. The EUV flux likely controls the demographics of the short-period planet population as well the ability for rocky planets to maintain habitable environments long enough for the emergence of life. We present the Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution (ESCAPE) mission, an astrophysics Small Explorer proposed to NASA. ESCAPE employs extreme- and far-ultraviolet spectroscopy (70 - 1800 Α) to characterize the highenergy radiation environment in the habitable zones (HZs) around nearby stars. ESCAPE provides the first comprehensive study of the stellar EUV environments that control atmospheric mass-loss and determine the habitability of rocky exoplanets. The ESCAPE instrument comprises an EUV grazing incidence telescope feeding four diffraction gratings and a photon-counting detector. The telescope is 50 cm diameter with four nested parabolic primary mirrors and four nested elliptical secondary mirrors, fabricated and aligned by NASA Marshall Space Flight Center and the Smithsonian Astrophysical Observatory. The off-plane grating assemblies are fabricated at Pennsylvania State University and the ESCAPE detector system is a micro-channel plate (MCP; 125mm x 40mm active area) sensor developed by the University of California, Berkeley. ESCAPE employs the versatile and high-heritage Ball Aerospace BCP-100 spacecraft.
The Colorado Ultraviolet Transit Experiment (CUTE) is a 6U NASA CubeSat carrying on board a low-resolution (R ∼ 2000 to 3000), near-UV (2500 to 3300 Å) spectrograph. It has a rectangular primary Cassegrain telescope to maximize the collecting area. CUTE, which is planned for launch in spring 2020, is designed to monitor transiting extra-solar planets orbiting bright, nearby stars, aiming at improving our understanding of planet atmospheric escape and star–planet interaction processes. We present here the CUTE data simulator, which we complemented with a basic data reduction pipeline. This pipeline will be then updated once the final CUTE data reduction pipeline is developed. We show here the application of the simulator to the HD209458 system and a first estimate of the precision on the measurement of the transit depth as a function of temperature and magnitude of the host star. We also present estimates of the effect of spacecraft jitter on the final spectral resolution. The simulator has been developed considering also scalability and adaptability to other missions carrying on board a long-slit spectrograph. The data simulator will be used to inform the CUTE target selection, choose the spacecraft and instrument settings for each observation, and construct synthetic CUTE wavelength-dependent transit light curves on which to develop the CUTE data reduction pipeline.
The Colorado Ultraviolet Transit Experiment (CUTE) is a near-UV (2550 to 3300 Å) 6U CubeSat mission designed to monitor transiting hot Jupiters to quantify their atmospheric mass loss and magnetic fields. CUTE will probe both atomic (Mg and Fe) and molecular (OH) lines for evidence of enhanced transit absorption, and to search for evidence of early ingress due to bow shocks ahead of the planet’s orbital motion. As a dedicated mission, CUTE will observe ≳100 spectroscopic transits of hot Jupiters over a nominal 7-month mission. This represents the equivalent of >700 orbits of the only other instrument capable of these measurements, the Hubble Space Telescope. CUTE efficiently utilizes the available CubeSat volume by means of an innovative optical design to achieve a projected effective area of ∼28 cm2, low instrumental background, and a spectral resolving power of R∼3000 over the primary science bandpass. These performance characteristics enable CUTE to discern transit depths between 0.1% and 1% in individual spectral absorption lines. We present the CUTE optical and mechanical design, a summary of the science motivation and expected results, and an overview of the projected fabrication, calibration, and launch timeline.
The Colorado Ultraviolet Transit Experiment (CUTE) is a near-UV (2550 - 3300 Å) 6U cubesat mission designed to monitor transiting hot Jupiters to quantify their atmospheric mass loss and magnetic fields. CUTE will probe both atomic (Mg and Fe) and molecular (OH) lines for evidence of enhanced transit absorption, and to search for evidence of early ingress due to bow shocks ahead of the planet’s orbital motion. As a dedicated mission, CUTE will observe ⪆ 60 spectroscopic transits of hot Jupiters over a nominal seven month mission. This represents the equivalent of > 700 orbits of the only other instrument capable of these measurements, the Hubble Space Telescope. CUTE efficiently utilizes the available cubesat volume by means of an innovative optical design to achieve a projected effective area of ∼ 22 cm2 , low instrumental background, and a spectral resolving power of R ∼ 3000 over the entire science bandpass. These performance characteristics enable CUTE to discern a transit depth of ⪅1% in individual spectral absorption lines. We present the CUTE optical and mechanical design, a summary of the science motivation and expected results, and an overview of the projected fabrication, calibration and launch timeline.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.