Terahertz detection using excitations of plasmon modes offers a high-speed, high resolution, and frequency-selective
alternative to existing technology. Plasmons in high mobility quantum well two-dimensional electron gas (2DEG)
systems can couple to radiation when either the channel carrier density, or the incident radiation, is spatially modulated
with appropriate periodicity. Grating-gated terahertz detectors having a voltage tunable frequency response have been
developed based on this principle. A continuous wave THz photomixer was used to characterize the resonant absorption
in such devices. At the fundamental 2DEG plasmon frequency, defined by the grating and the quantum well carrier
density, a 20% change in transmission was observed. As the resonance is tuned from the 'natural' plasmon frequency
through application of a gate bias, it shifts as expected, but the transmission change drops to only a few percent.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.