The catalysts commonly used for the H2 producing reaction in artificial solar systems are typically platinum or
particulate platinum composites. Biological catalysts, the hydrogenases, exist in a wide-variety of microbes and are
biosynthesized from abundant, non-precious metals. By virtue of a unique catalytic metallo-cluster that is composed of
iron and sulfur, [FeFe]-hydrogenases are capable of catalyzing H2 production at turnover rates of millimoles-per-second.
In addition, these biological catalysts possess some of the characteristics that are desired for cost-effective solar H2
production systems, high solubilities in aqueous solutions and low activation energies, but are sensitive to CO and O2.
We are investigating ways to merge [FeFe]-hydrogenases with a variety of organic materials and nanomaterials for the
fabrication of electrodes and biohybrids as catalysts for use in artificial solar H2 production systems. These efforts
include designs that allow for the integration of [FeFe]-hydrogenase in dye-solar cells as models to measure solar
conversion and H2 production efficiencies. In support of a more fundamental understanding of [FeFe]-hydrogenase for
these and other applications the role of protein structure in catalysis is being investigated. Currently there is little known
about the mechanism of how these and other enzymes couple multi-electron transfer to proton reduction. To further the
mechanistic understanding of [FeFe]-hydrogenases, structural models for substrate transfer are being used to create
enzyme variants for biochemical analysis. Here results are presented on investigations of proton-transfer pathways in
[FeFe]-hydrogenase and their interaction with single-walled carbon nanotubes.
Single-walled carbon nanotubes (SWNT) are promising candidates for use in energy conversion devices as an active
photo-collecting elements, for dissociation of bound excitons and charge-transfer from photo-excited chromophores, or
as molecular wires to transport charge. Hydrogenases are enzymes that efficiently catalyze the reduction of protons from
a variety of electron donors to produce molecular hydrogen. Hydrogenases together with SWNT suggest a novel biohybrid
material for direct conversion of sunlight into H2. Here, we report changes in SWNT optical properties upon
addition of recombinant [FeFe] hydrogenases from Clostridium acetobutylicum and Chlamydomonas reinhardtii. We
find evidence that novel and stable charge-transfer complexes are formed under conditions of the hydrogenase catalytic
turnover, providing spectroscopic handles for further study and application of this hybrid system.
We measure the concentration of single-walled nanotubes (SWNTs) present in aqueous suspensions by a technique that involves surfactant removal followed by high-temperature oxidation and mass spectroscopy of the resulting products. We also analyze the shift in SWNT emission energy evident from photoluminescence excitation spectroscopy as the surfactant molecule is changed. Next we study spectroscopic changes as surfactant is gently removed by dialysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.