Enhance sensitivity of the terahertz (THz) wave sensor by the THz wave control characteristic based on artificial electromagnetic meta-materials, is a hot spot in current research. The performance of split ring resonators (SRRs) THz sensor on Mylar substrate is numerical simulated with COMSOL Multiphysics software in this paper. The two key characteristic parameters of the THz sensor are analyzed with COMSOL Multiphysics software, which are the thickness of the Mylar substrate and the gap width of the gold SRRs. By comparing the relationship between different parameters and the corresponding resonance frequency curve, the optimal parameters of the THz sensor are obtained which are 10 microns for the Mylar substrate thickness, 2 microns for the gap width of gold SRRs. Then the optimized THz sensor model is used to test the different thickness and relative dielectric constant material with the COMSOL Multiphysics software. The results show that the resonant frequency (f0) move to lower frequency with the increase of the relative dielectric constant of tested materials, and has a good linear relationship between the f0 and the relative dielectric constant of tested materials. While the f0 also move to lower frequency as the thickness of tested materials are increase, but when the thickness are more than 5 microns, the resonance peak stay at near 1.997 THz. They are show that the SRRs THz sensor on flexible substrate has high measurement precision, sensitivity, and reliability when the tested materials are common metal, semiconductor and medium layer which layer thickness is less than 5 microns, and the relative dielectric constant for the range of 1-4 by the linear relationship between the resonance frequency and the different parameters of tested materials, as well as it can provide theory references for actual testing of such terahertz sensors.
In this paper, we present experimentally the transmission and absorption properties of THz pulse through subwavelength ellipse gold rings which deposited on the silicon substrate. The transmission measurement is carried out using THz time-domain spectroscopy. THz spectra of these ellipse gold rings shows the high transmissivity, low absorption and flat refractive index curve in the frequency range of 0.4-2.5 THz. The results show that the transmission coefficients of all samples are above 0.68 in THz wave band. And the enhanced transmission of the two kinds of samples is more sensitive in high frequency range than in low frequency range. Especially when the angle between the THz wave polarization direction and the long axis of elliptic ring is 0o, the transmission coefficient for the ellipse gold split rings of sample No.2 is more than 0.98 after 1.45THz. The slits were introduced into the ellipse gold rings structure can be used effectively to modulate transmission light for the potential application of THz photonic devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.