Caenorhabditis elegans can survive upon harsh environments by entering dauer diapause with reduced metabolic activity and distinctive structural changes. We employed optical diffraction tomography (ODT) to quantitatively measure the transition of mass density distribution of living C. elegans larvae in the reproductive and diapause stages. ODT revealed that the mass density of C. elegans larvae increased upon entry into dauer diapause, and surprisingly, the harshly desiccated dauer larvae exhibited very high refractive index values (n ~ 1.5). Moreover, mutants that are sensitive to desiccation displayed structural abnormalities in the anhydrobiotic stage that were not observed by conventional microscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.