This article reports the progress in the beamlines at the SPring-8 Angstrom Compact free electron LAser (SACLA). The beamline optical and diagnostics systems have been upgraded to further accelerate the scientific applications of X-ray free-electron lasers (XFELs). End-station instruments have also been developed to provide user-friendly experimental platforms which allow efficient data collection. Along with the upgrades of beamlines and experimental stations, we have established reliable and efficient procedures of the beamline operation.
X-ray free-electron lasers (XFELs) that utilize intense and ultra-short pulse X-rays may damage optical elements. We investigated the damage fluence thresholds of optical materials by using an XFEL focusing beam that had a power density sufficient to induce ablation phenomena. The 1 μm focusing beams with 5.5 keV and/or 10 keV photon energies were produced at the XFEL facility SACLA (SPring-8 Angstrom Compact free electron LAser). Test samples were irradiated with the focusing beams under normal and/or grazing incidence conditions. The samples were uncoated Si, synthetic silica glass (SiO2), and metal (Rh, Pt)-coated substrates, which are often used as X-ray mirror materials.
X-ray free electron lasers (XFELs) with intense and ultra-short pulse X-rays possibly induce damage to optical elements.
We investigated the damage thresholds of optical materials by using focusing XFEL beams with sufficient power density
for studying ablation phenomena. 1-μm focusing beams with 10 keV photon energy were produced at the XFEL facility
SACLA (SPring-8 Angstrom Compact free electron LAser). The focusing beams irradiated samples of rhodium-coated
substrate, which is used in X-ray mirror optics, under grazing incident condition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.