Resolve onboard the x-ray satellite X-Ray Imaging and Spectroscopy Mission (XRISM) is a cryogenic instrument with an x-ray microcalorimeter in a Dewar. A lid partially transparent to x-rays (called gate valve or GV) is installed at the top of the Dewar along the optical axis. Because observations will be made through the GV for the first few months, the x-ray transmission calibration of the GV is crucial for initial scientific outcomes. We present the results of our ground calibration campaign of the GV, which is composed of a Be window and a stainless steel mesh. For the stainless steel mesh, we measured its transmission using the x-ray beamline at ISAS. For the Be window, we used synchrotron facilities to measure the transmission and modeled the data with (i) photoelectric absorption and incoherent scattering of Be, (ii) photoelectric absorption of contaminants, and (iii) coherent scattering of Be changing at specific energies. We discuss the physical interpretation of the transmission discontinuity caused by the Bragg diffraction in polycrystal Be, which we incorporated into our transmission phenomenological model. We present the x-ray diffraction measurement on the sample to support our interpretation. The measurements and the constructed model meet the calibration requirements of the GV. We also performed a spectral fitting of the Crab nebula observed with Hitomi SXS and confirmed improvements of the model parameters.
Resolve onboard the X-ray satellite XRISM is a cryogenic instrument with an X-ray microcalorimeter in a Dewar. A lid partially transparent to X-rays is installed at the top of the Dewar along the optical axis, which is called the gate valve (GV). Because observations will be made through the GV for the first few months, the X-ray transmission calibration of the GV is crucial for initial scientific outcomes. We present the results of our ground calibration campaign of the GV, which is composed of a Be window and a stainless steel mesh. For the stainless steel mesh, we measured its transmission using the X-ray beamline at ISAS for the first time. For the Be window, we used synchrotron facilities to measure the transmission and modeled the data with (i) photoelectric absorption and incoherent scattering of Be, (ii) photoelectric absorption of contaminants, and (iii) coherent scattering of Be. We discuss the physical interpretation of the transmission discontinuity caused by the Bragg diffraction in poly-crystal Be, which we incorporated into our phenomenological model. The measurements and the constructed model meet the calibration requirements of the GV. We also performed a spectral fitting of the Crab nebula data observed with Hitomi SXS and confirmed improvements of the model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.