A challenge in model-based assist feature placement is to find optimal placements while satisfying
mask rules and preventing AF printing. There are numerous strategies for achieving this ranging
from fully rule-based methods to pixel-based inversion. Our proposed solution is to identify the
optimal locations of assist features using modeling information based strictly on optics and resist
stack optical characteristics. Once these positions have been found, preliminary AFs can be placed.
At this point suggested sizes and shapes can be identified, although these can later be modified. In a
later step, MRC cleanup, printability fixing, and main-pattern OPC can be performed simultaneously.
This has the advantage of allowing the use of the full process model to predict the location of OPC
edges accurately, and use calibrated or 3d mask models to determine assist feature printing behavior.
This correction is done while maintaining MRC constraints. In this flow, an AF placement field,
generated from the pre-OPC target patterns, can be used to provide accurate guidance on how to
move assist features to get the most benefit while keeping other constraints in mind. Using this
method, a range of printability fixing strategies, guided by placement benefits, is available. We
present data showing that the benefit of AF placements can be determined from optical parameters,
on target (non-OPC) data, and that this method leads to beneficial yet compliant masks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.