Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 ± 0.06) and homogeneity (AUC = 0.82 ± 0.07), which significantly outperformed all Minkowski Functionals (p < 0.05). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.
We explore a computational framework for functional connectivity analysis in resting-state functional MRI (fMRI) data acquired from the human brain for recovering the underlying network structure and understanding causality between network components. Termed mutual connectivity analysis (MCA), this framework involves two steps, the first of which is to evaluate the pair-wise cross-prediction performance between fMRI pixel time series within the brain. In a second step, the underlying network structure is subsequently recovered from the affinity matrix using non-metric network clustering approaches, such as the so-called Louvain method. Finally, we use convergent cross-mapping (CCM) to study causality between different network components. We demonstrate our MCA framework in the problem of recovering the motor cortex network associated with hand movement from resting state fMRI data. Results are compared with a ground truth of active motor cortex regions as identified by a task-based fMRI sequence involving a finger-tapping stimulation experiment. Our results regarding causation between regions of the motor cortex revealed a significant directional variability and were not readily interpretable in a consistent manner across subjects. However, our results on whole-slice fMRI analysis demonstrate that MCA-based model-free recovery of regions associated with the primary motor cortex and supplementary motor area are in close agreement with localization of similar regions achieved with a task-based fMRI acquisition. Thus, we conclude that our MCA methodology can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.
KEYWORDS: Functional magnetic resonance imaging, Neurons, Brain, Magnetic resonance imaging, Visualization, Radiology, Neural networks, Linear filtering, Analytical research, Data acquisition
Echo state networks (ESN) are recurrent neural networks where the hidden layer is replaced with a fixed reservoir of neurons. Unlike feed-forward networks, neuron training in ESN is restricted to the output neurons alone thereby providing a computational advantage. We demonstrate the use of such ESNs in our mutual connectivity analysis (MCA) framework for recovering the primary motor cortex network associated with hand movement from resting state functional MRI (fMRI) data. Such a framework consists of two steps - (1) defining a pair-wise affinity matrix between different pixel time series within the brain to characterize network activity and (2) recovering network components from the affinity matrix with non-metric clustering. Here, ESNs are used to evaluate pair-wise cross-estimation performance between pixel time series to create the affinity matrix, which is subsequently subject to non-metric clustering with the Louvain method. For comparison, the ground truth of the motor cortex network structure is established with a task-based fMRI sequence. Overlap between the primary motor cortex network recovered with our model free MCA approach and the ground truth was measured with the Dice coefficient. Our results show that network recovery with our proposed MCA approach is in close agreement with the ground truth. Such network recovery is achieved without requiring low-pass filtering of the time series ensembles prior to analysis, an fMRI preprocessing step that has courted controversy in recent years. Thus, we conclude our MCA framework can allow recovery and visualization of the underlying functionally connected networks in the brain on resting state fMRI.
While the proximal femur is preferred for measuring bone mineral density (BMD) in fracture risk estimation, the introduction of volumetric quantitative computed tomography has revealed stronger associations between BMD and spinal fracture status. In this study, we propose to capture properties of trabecular bone structure in spinal vertebrae with advanced second-order statistical features for purposes of fracture risk assessment. For this purpose, axial multi-detector CT (MDCT) images were acquired from 28 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. A semi-automated method was used to annotate the trabecular compartment in the central vertebral slice with a circular region of interest (ROI) to exclude cortical bone; pixels within were converted to values indicative of BMD. Six second-order statistical features derived from gray-level co-occurrence matrices (GLCM) and the mean BMD within the ROI were then extracted and used in conjunction with a generalized radial basis functions (GRBF) neural network to predict the failure load of the specimens; true failure load was measured through biomechanical testing. Prediction performance was evaluated with a root-mean-square error (RMSE) metric. The best prediction performance was observed with GLCM feature ‘correlation’ (RMSE = 1.02 ± 0.18), which significantly outperformed all other GLCM features (p < 0.01). GLCM feature correlation also significantly outperformed MDCTmeasured mean BMD (RMSE = 1.11 ± 0.17) (p< 10-4). These results suggest that biomechanical strength prediction in spinal vertebrae can be significantly improved through characterization of trabecular bone structure with GLCM-derived texture features.
Functional MRI (fMRI) is currently used to investigate structural and functional connectivity in human brain networks. To this end, previous studies have proposed computational methods that involve assumptions that can induce information loss, such as assumed linear coupling of the fMRI signals or requiring dimension reduction. This study presents a new computational framework for investigating the functional connectivity in the brain and recovering network structure while reducing the information loss inherent in previous methods. For this purpose, pair-wise mutual information (MI) was extracted from all pixel time series within the brain on resting-state fMRI data. Non-metric topographic mapping of proximity (TMP) data was subsequently applied to recover network structure from the pair-wise MI analysis. Our computational framework is demonstrated in the task of identifying regions of the primary motor cortex network on resting state fMRI data. For ground truth comparison, we also localized regions of the primary motor cortex associated with hand movement in a task-based fMRI sequence with a finger-tapping stimulus function. The similarity between our pair-wise MI clustering results and the ground truth is evaluated using the dice coefficient. Our results show that non-metric clustering with the TMP algorithm, as performed on pair-wise MI analysis, was able to detect the primary motor cortex network and achieved a dice coefficient of 0.53 in terms of overlap with the ground truth. Thus, we conclude that our computational framework can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.
High-contrast bone structures are a major noise contributor in chest radiographic images. A signal of interest in a chest radiograph could be either partially or completely obscured or “overshadowed” by the highly contrasted bone structures in its surrounding. Thus, removing the bone structures, especially the posterior rib and clavicle structures, is highly desirable to increase the visibility of soft tissue density. We developed an innovative technology that offers a solution to suppress bone structures, including posterior ribs and clavicles, on conventional and portable chest X-ray images. The bone-suppression image processing technology includes five major steps: 1) lung segmentation, 2) rib and clavicle structure detection, 3) rib and clavicle edge detection, 4) rib and clavicle profile estimation, and 5) suppression based on the estimated profiles. The bone-suppression software outputs an image with both the rib and clavicle structures suppressed. The rib suppression performance was evaluated on 491 images. On average, 83.06% (±6.59%) of the rib structures on a standard chest image were suppressed based on the comparison of computer-identified rib areas against hand-drawn rib areas, which is equivalent to about an average of one rib that is still visible on a rib-suppressed image based on a visual assessment. Reader studies were performed to evaluate reader performance in detecting lung nodules and pneumothoraces with and without a bone-suppression companion view. Results from reader studies indicated that the bone-suppression technology significantly improved radiologists’ performance in the detection of CT-confirmed possible nodules and pneumothoraces on chest radiographs. The results also showed that radiologists were more confident in making diagnoses regarding the presence or absence of an abnormality after rib-suppressed companion views were presented
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.