Mitochondrial DNA (mtDNA) in tumor cells was found to play an important role in maintaining the malignant phenotype. Using laser scanning confocal fluorescence microscopy (LSCFM) in a recent work, we reported a variable fluorescence intensity of ethidium bromide (EB) in mitochondria nucleoids of living carcinoma cells. Since when EB is bound to nucleic acids its fluorescence is intensified; a higher EB fluorescence intensity could reflect a higher DNA accessibility to EB, suggesting a higher mtDNA replication activity. To prove this hypothesis, in the present work we studied, by LSCFM, the EB fluorescence in mitochondria nucleoids of living neuroblastoma cells, a model system in which differentiation affects the level of mtDNA replication. A drastic decrease of fluorescence was observed after differentiation. To correlate EB fluorescence intensity to the mtDNA replication state, we evaluated the mtDNA nascent strands content by ligation-mediated real-time PCR, and we found a halved amount of replicating mtDNA molecules in differentiating cells. A similar result was obtained by BrdU incorporation. These results indicate that the low EB fluorescence of nucleoids in differentiated cells is correlated to a low content of replicating mtDNA, suggesting that EB may be used as a marker of mtDNA replication in living cells.
We propose a 2,5-Bis[1-(4-N-methylpyridinium)ethen-2-yl)]-N-methylpyrrole ditriflate (PEPEP) as a novel nontoxic, nonpotentiometric mitochondrial probe for confocal fluorescence microscopy. PEPEP is a representative chromophore of a large family of heterocyclic fluorescent dyes that show fluorescence emission in aqueous media and great DNA affinity. We check its cytotoxicity and intracellular localization in mammalian and yeast cell cultures. We demonstrate that PEPEP is a very efficient dye for fluorescence confocal microscopy and a valuable alternative to the most frequently used mitochondrial stains.
We present here the study of intracellular distribution of doxorubicin in the single living cell by scanning confocal fluorescence microscopy, with argon laser excitation and photon counting detection. New results on the nuclear and cytoplasmic drug fluorescence not detectable by conventional microscopy are discussed. Differences in the fluorescence pattern observed in living and fixed cells suggest new insights in the mode of action of the drug.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.