As the semiconductor industry rapidly approaches the 3nm lithography node, on product overlay (OPO) requirements have become tighter and as a result, residuals magnitude requirements have become even more challenging. Metrology performance enhancements are required to meet these demands. Color Per Layer (CPL) is a unique imaging overlay metrology approach that enables the measurement of each layer with individually-optimized wavelength and focus position. CPL allows the user to custom-define the most suitable conditions per layer, thereby ensuring optimal performance. Imaging-based overlay (IBO) utilizes CPL in order to overcome inaccuracies due to interactions between bottom and top layers. These layers are fundamentally different in that the top grating is usually the photoresist layer, but the bottom grating can be any process layer. Therefore, optimizing the conditions for each layer will maximize measurement accuracy. KLA’s Archer™ 700 metrology tool addresses these metrology challenges by putting CPL to use, where the Wave Tuner (WT) allows the user to select a specific wavelength. This paper presents this novel CPL approach and discusses its reduction in OPO and contrast, and reviews use cases from DRAM and 3D NAND. We will present the results from these case studies, focusing on SK Hynix DRAM production wafers.
Overlay process control is a critical aspect of integrated circuit manufacturing. Advanced DRAM manufacturing overlay error budget approaches the sub-2nm threshold, including all sources of overlay error: litho processing, non-litho processing, metrology error, etc. Overlay measurement quality, both for accuracy and robustness, depends on the metrology system and its recipe setup. The optimal configuration depends on the layer and materials involved. Increased flexibility of metrology setup is of paramount importance, paired with improved methods of recipe optimization.
Both optical image-based overlay (IBO) and scatterometry diffraction overlay (SCOL®) are necessary tools for overlay control. For some devices and layers IBO provides the best accuracy and robustness, while on others SCOL provides optimum metrology. Historically, wavelength selection was limited to discrete wavelengths and at only a single wavelength. At advanced nodes IBO and SCOL require wavelength tunability and multiple wavelengths to optimize accuracy and robustness, as well as options for polarization and numerical aperture (NA). In previous studies1,2,3 we investigated wavelength tunability analysis with landscape analysis, using analytic techniques to determine the optimal setup. In this report we show advancements in the landscape analysis technique for IBO through both focus and wavelength, and comparisons to SCOL. A key advantage of imaging is the ability to optimize wavelength on a per-layer basis. This can be a benefit for EUV layers in combination with those of 193i, for example, as well as other applications such as thick 3D NAND layers. The goal is to make accurate and robust overlay metrology that is immune from process stack variations, and to provide metrics that indicate the quality of metrology performance. Through both simulation and on-wafer advanced DRAM measurements, we show quantitative benefits of accuracy and robustness to process stack variability for IBO and SCOL applications.
Methodologies described in this work can be achieved using Archer™ overlay metrology systems, ATL™ overlay metrology systems, and 5D Analyzer® advanced data analysis and patterning control solution.
In overlay (OVL) metrology the quality of measurements and the resulting reported values depend heavily on the measurement setup used. For example, in scatterometry OVL (SCOL) metrology a specific target may be measured with multiple illumination setups, including several apodization options, two possible laser polarizations, and multiple possible laser wavelengths. Not all possible setups are suitable for the metrology method as different setups can yield significantly different performance in terms of the accuracy and robustness of the reported OVL values. Finding an optimal measurement setup requires great flexibility in measurement, to allow for high-resolution landscape mapping (mapping the dependence of OVL, other metrics, and details of pupil images on measurement setup). This can then be followed by a method for analyzing the landscape and selecting an accurate and robust measurement setup. The selection of an optimal measurement setup is complicated by the sensitivity of metrology to variations in the fabrication process (process variations) such as variations in layer thickness or in the properties of target symmetry. The metrology landscape changes with process variations and maintaining optimal performance might require continuous adjustments of the measurement setup. Here we present a method for the selection and adjustment of an optimal measurement setup. First, the landscape is measured and analyzed to calculate theory-based accurate OVL values as well as quality metrics which depend on details of the pupil image. These OVL values and metrics are then used as an internal ruler (“self-reference”), effectively eliminating the need for an external reference such as CD-SEM. Finally, an optimal measurement setup is selected by choosing a setup which yields the same OVL values as the self-reference and is also robust to small changes in the landscape. We present measurements which show how a SCOL landscape changes within wafer, wafer to wafer, and lot to lot with intentionally designed process variations between. In this case the process variations cause large shifts in the SCOL landscape and it is not possible to find a common optimal measurement setup for all wafers. To deal with such process variations we adjust the measurement setup as needed. Initially an optimal setup is chosen based on the first wafer. For subsequent wafers the process stability is continuously monitored. Once large process variations are detected the landscape information is used for selecting a new measurement setup, thereby maintaining optimal accuracy and robustness. Methods described in this work are enabled by the ATL (Accurate Tunable Laser) scatterometry-based overlay metrology system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.