This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Although only ground conjugation results are presented in this article, the technique is expected to operate in the generalized mode guaranteeing sufficiently large speckles (larger than the detector pixels). Pixel gains and offsets are effectively corrected, so they don’t significantly influence the accuracy of the profile estimation. Temporal correlations are also shown to provide complementary information not only on the layer wind velocity, but a coarse estimation of their altitude.
Factors limiting the accuracy of the method, such as chromaticity, turbulence strength, exposure time and vibrations are discussed. The method provides excellent performance in simulations and encouraging preliminary results from on-sky images acquired and Paranal, Chile. Comparison to coetaneous profiles estimated with the Durham Stereo-SCIDAR instrument (DSS) are analysed.
Stereo-SCIDAR is a generalised SCIDAR instrument which is used to characterise the profile of the atmospheric optical turbulence strength and wind velocity using triangulation between two optical binary stars. Stereo-SCIDAR has demonstrated the capability to resolve turbulent layers with the required vertical resolution to support wide-field ELT instrument designs. These high resolution atmospheric parameters are critical for design studies and statistical evaluation of on-sky performance under real conditions. Here we report on the new Stereo-SCIDAR instrument installed on one of the Auxillary Telescope ports of the Very Large Telescope array at Cerro Paranal. Paranal is located approximately 20 km from Cerro Armazones, the site of the E-ELT. Although the surface layer of the turbulence will be different for the two sites due to local geography, the high-altitude resolution profiles of the free atmosphere from this instrument will be the most accurate available for the E-ELT site.
In addition, these unbiased and independent profiles are also used to further characterise the site of the VLT. This enables instrument performance calibration, optimisation and data analysis of, for example, the ESO Adaptive Optics facility and the Next Generation Transit Survey. It will also be used to validate atmospheric models for turbulence forecasting. We show early results from the commissioning and address future implications of the results.
View contact details
No SPIE Account? Create one