Infrared imagers used to acquire data for automatic target recognition are inherently limited by the physical properties of their components. Fortunately, image super-resolution techniques can be applied to overcome the limits of these imaging systems. This increase in resolution can have potentially dramatic consequences for
improved automatic target recognition (ATR) on the resultant higher-resolution images. We will discuss superresolution techniques in general and specifically review the details of one such algorithm from the literature suited to real-time application on forward-looking infrared (FLIR) images. Following this tutorial, a numerical analysis of the algorithm applied to synthetic IR data will be presented, and we will conclude by discussing the implications of the analysis for improved ATR accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.