Differentiation between benign and malignant nodules is a problem encountered by radiologists when visualizing computed tomography (CT) scans. Adenocarcinomas and granulomas have a characteristic spiculated appearance and may be fluorodeoxyglucose avid, making them difficult to distinguish for human readers. In this retrospective study, we aimed to evaluate whether a combination of radiomic texture and shape features from noncontrast CT scans can enable discrimination between granulomas and adenocarcinomas. Our study is composed of CT scans of 195 patients from two institutions, one cohort for training (N = 139) and the other (N = 56) for independent validation. A set of 645 three-dimensional texture and 24 shape features were extracted from CT scans in the training cohort. Feature selection was employed to identify the most informative features using this set. The top ranked features were also assessed in terms of their stability and reproducibility across the training and testing cohorts and between scans of different slice thickness. Three different classifiers were constructed using the top ranked features identified from the training set. These classifiers were then validated on the test set and the best classifier (support vector machine) yielded an area under the receiver operating characteristic curve of 77.8%.
Crohn’s Disease is a relapsing and remitting disease involving chronic intestinal inflammation that is often characterized by hypertrophy of visceral adipose tissue (VAT). While an increased ratio of VAT to subcutaneous fat (SQF) has previously been identified as a predictor of worse outcomes in Crohn’s Disease, bowel-proximal fat regions have also been hypothesized to play a role in inflammatory response. However, there has been no detailed study of VAT and SQF regions on MRI to determine their potential utility in assessing Crohn’s Disease severity or guiding therapy. In this paper we present a fully-automated algorithm to segment and quantitatively characterize VAT and SQF via routinely acquired diagnostic bowel MRIs. Our automated segmentation scheme for VAT and SQF regions involved a combination of morphological processing and connected component analysis, and demonstrated DICE overlap scores of 0.86±0.05 and 0.91±0.04 respectively, when compared against expert annotations. Additionally, VAT regions proximal to the bowel wall (on diagnostic bowel MRIs) demonstrated a statistically significantly, higher expression of four unique radiomic features in pediatric patients with moderately active Crohn’s Disease. These features were also able to accurately cluster patients who required aggressive biologic therapy within a year of diagnosis from those who did not, with 87.5% accuracy. Our findings indicate that quantitative radiomic characterization of visceral fat regions on bowel MRIs may be highly relevant for guiding therapeutic interventions in Crohn’s Disease.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.