Grasping of unknown objects with neither appearance data nor object models given in advance is very important for robots that work in an unfamiliar environment. The goal of this paper is to quickly synthesize an executable grasp for one unknown object by using cylinder searching on a single point cloud. Specifically, a 3D camera is first used to obtain a partial point cloud of the target unknown object. An original method is then employed to do post treatment on the partial point cloud to minimize the uncertainty which may lead to grasp failure. In order to accelerate the grasp searching, surface normal of the target object is then used to constrain the synthetization of the cylinder grasp candidates. Operability analysis is then used to select out all executable grasp candidates followed by force balance optimization to choose the most reliable grasp as the final grasp execution. In order to verify the effectiveness of our algorithm, Simulations on a Universal Robot arm UR5 and an under-actuated Lacquey Fetch gripper are used to examine the performance of this algorithm, and successful results are obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.