Piezoelectric transducer (PZT) is often used in the field of precision measurement to realize the micro-positioning function, such as Fizeau interferometer. But due to its inherent severe hysteresis and nonlinear characteristics, the use of piezoelectric transducer is affected. A piezoelectric transducer control instrument was designed to measure the displacement characteristic curve of piezoelectric transducer. The instrument included the control system and data received system. The control system produces a triangular wave signal with adjustable amplitude and frequency, then calculated from received signal to drive the piezoelectric transducer. The output displacement information of piezoelectric transducer is collected by the signal acquisition circuit composed of displacement sensor and ADC analog-digital converter. The purpose of the single chip is collecting and processing displacement data. According to the experimental results, we can get the characteristics curve of the piezoelectric transducer, which support the basis analysis and available for the future experiment.
In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system’s hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor’s positive and reversal rotation and speed adjustment. In many various driving module, the L298N module’s integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.
There are a lot of shortcomings with traditional optical adjustment in interferometry, such as low accuracy, time-consuming, labor-intensive, uncontrollability, and bad repetitiveness, so we treat the problem by using wireless remote control system. Comparing to the traditional method, the effect of vibration and air turbulence will be avoided. In addition the system has some peculiarities of low cost, high reliability and easy operation etc. Furthermore, the switching between two charge coupled devices (CCDs) can be easily achieved with this wireless remote control system, which is used to collect different images. The wireless transmission is achieved by using Radio Frequency (RF) module and programming the controller, pulse width modulation (PWM) of direct current (DC) motor, real-time switching of relay and high-accuracy displacement control of FAULHABER motor are available. The results of verification test show that the control system has good stability with less than 5% packet loss rate, high control accuracy and millisecond response speed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.