We have fabricated and characterized AlInAsSb- and InPAsSb-absorber nBn infrared detectors with 200 K cutoff wavelengths from 2.55 to 3.25 μm. Minority-carrier lifetimes determined by microwave reflectance measurements were 0.2-1.0 μs in doped n-type absorber materials. Devices having 4 μm thick absorbers exhibited sharp cutoff at wavelengths of 2.9 μm or longer and softer cutoff at shorter wavelengths. Top-illuminated devices with n+ InAs window/contact layers had external quantum efficiencies of 40-50% without anti-reflection coating at 50 mV reverse bias and wavelengths slightly shorter than cutoff. Despite the shallow-etch mesa nBn design, perimeter currents contributed significantly to the 200 K dark current. Dark currents for InPAsSb devices were lower than AlInAsSb devices with similar cutoff wavelengths. For unoptimized InPAsSb devices with 2.55 μm cutoff, 200 K areal and perimeter dark current densities at -0.2 V bias in devices of various sizes were approximately 1x10-7 A/cm2 and 1.4x10-8 A/cm, respectively.
An InGaAs/GaAsSb Type-II superlattice is explored as an absorber material for extended short-wave infrared detection. A 10.5 nm period was grown with an InGaAs/GaAsSb thickness ratio of 2 with a target In composition of 46% and target Sb composition of 62%. Cutoff wavelengths near 2.8 μm were achieved with responsivity beyond 3 μm. Demonstrated dark current densities were as low as 1.4 mA/cm2 at 295K and 13 μA/cm2 at 235K at -1V bias. A significant barrier to hole extraction was identified in the detector design that severely limited the external quantum efficiency (EQE) of the detectors. A redesign of the detector that removes that barrier could make InGaAs/GaAsSb very competitive with current commercial HgCdTe and extended InGaAs technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.