Photoacoustic (PA) tomography (PAT) is a promising technology for noninvasive temperature sensing. However, traditional PA thermometry can measure only the temperature changes relative to a baseline. Here we report a new thermal-energy-memory-based PA thermometry (TEMPT) to quantify the Grüneisen parameter and recover the absolute temperature distribution in deep tissues. We have validated the feasibility of TEMPT on tissue-mimicking phantoms and achieved a measurement accuracy of ~0.5 °C at 1.5 cm depth. As proof-of-concept, we applied TEMPT for temperature mapping during focused ultrasound treatment in mice in vivo. TEMPT is expected to find applications in thermotherapy on small animal models.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.