Dimension of an inertial manifold for a chaotic attractor of spatially distributed system is estimated using autoencoder neural network. The inertial manifold is a low dimensional manifold where the chaotic attractor is embedded. The autoencoder maps system state vectors onto themselves letting them pass through an inner state with a reduced dimension. The training processes of the autoencoder is shown to depend dramatically on the reduced dimension: a learning curve saturates when the dimension is too small and decays if it is sufficient for a lossless information transfer. The smallest sufficient value is considered as a dimension of the inertial manifold, and the autoencoder implements a mapping onto the inertial manifold and back. The correctness of the computed dimension is confirmed by its remarkable coincidence with the one obtained as a number of covariant Lyapunov vectors with vanishing pairwise angles. These vectors are called physical modes. Unlike never having zero angles residual ones they are known to span a tangent subspace for the inertial manifold.
A starlike network of non-identical phase oscillators is considered that contains the hub and tree rays each having a single node. In such network effect of indirect synchronization control is reported: changing the natural frequency and the coupling strength of one of the peripheral oscillators one can switch on an off the synchronization of the others. The controlling oscillator at that is not synchronized with them and has a frequency that is approximately four time higher then the frequency of the synchronization. The parameter planes showing a corresponding synchronization tongue are represented and time dependencies of phase differences are plotted for points within and outside of the tongue.
A quantum model of spin dynamics of spin-orbit coupled two-dimensional electron gas in the presence of strong high- frequency electromagnetic field is suggested. Interaction of electrons with optical phonons is taken into account in the second order of perturbation theory.
A generalized model of star-like network is suggested that takes into account non-additive coupling and nonlinear transformation of coupling variables. For this model a method of analysis of synchronized cluster stability is developed. Using this method three star-like networks based on Ikeda, predator-prey and Hénon maps are studied.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.