The recently developed technique of ultrafast third harmonic generation (THG) micro-spectroscopy is discussed. The approach is easily adapted to a standard laser scanning microscope and allows for two and three photon resonances to be identified in non-fluorescent unlabeled samples. This work provides nonlinear microscopists with a tool for further understanding the contrast and damage mechanisms they will encounter under nonlinear excitation. Here, we use THG micro-spectroscopy to investigate the nonlinear optical properties of hemoglobin over the spectral range of 770 -1000 nm with 100-fs duration, ~1-nJ energy laser pulses. We demonstrate the ability of this approach to distinguish different ligand binding states in physiological solutions of human hemoglobin.
Conference Committee Involvement (1)
Commercial and Biomedical Applications of Ultrafast Lasers IV
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.