In this work, we design and produce 1280x1024 format InGaAs based planar type detectors with 15μm pixel pitch. We have obtained diffusion current limited low dark current (~10fA) and high responsivity (1.08A/W at 1.55μm) values at room temperature conditions. Moreover, dark current modeling is performed using diffusion, generation and recombination (GR) and trap assisted tunneling (TAT) current mechanisms. Ideality factor is extracted from forward bias characteristics. Excellent match between modeling and experimental data is reached. Also, temperature dependency of dark current is studied in 10°C – 60°C ranges. The area and perimeter related dark current components are differentiated using test detectors with changing diameters that are placed next to the detector array structure. Experimental data shows good agreement with theoretical expectations.
Optical Solar Reflectors (OSRs) form the physical interface between the spacecraft and space and they are essential for the stabilization and uniform distribution of temperature throughout the spacecraft. OSRs need to possess a spectrally selective response of broadband and perfect electromagnetic wave absorption in the thermal-infrared spectral range, while strongly reflecting the solar energy input. In this work, we experimentally show that disordered and densely packed ITO nanorod forests can be used as an excellent top-layer metasurface in a metal-insulator-oxide cavity configuration, and a thermal-emissivity of 0.97 is experimentally realized in the spectral range from 2.5 to 25 μm. The low-loss dielectric response of ITO in the solar spectrum, from 300 nm to 2.5 μm range limited the solar absorptivity to an experimental value of 0.167. These make our proposed design highly promising for its application in space missions due to combining high throughput, robustness, low cost with ultra-high performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.