Barrett’s esophagus (BE) is a premalignant condition that has an increased risk to turn into esophageal adenocarcinoma. Classification and staging of the different changes (BE in particular) in the esophageal mucosa are challenging since they have a very similar appearance. Confocal laser endomicroscopy (CLE) is one of the newest endoscopy tools that is commonly used to identify the pathology type of the suspected area of the esophageal mucosa. However, it requires a well-trained physician to classify the image obtained from CLE. An automatic stage classification of esophageal mucosa is presented. The proposed model enhances the internal features of CLE images using an image filter that combines fractional integration with differentiation. Various features are then extracted on a multiscale level, to classify the mucosal tissue into one of its four types: normal squamous (NS), gastric metaplasia (GM), intestinal metaplasia (IM or BE), and neoplasia. These sets of features are used to train two conventional classifiers: support vector machine (SVM) and random forest. The proposed method was evaluated on a dataset of 96 patients with 557 images of different histopathology types. The SVM classifier achieved the best performance with 96.05% accuracy based on a leave-one-patient-out cross-validation. Additionally, the dataset was divided into 60% training and 40% testing; the model achieved an accuracy of 93.72% for the testing data using the SVM. The presented model showed superior performance when compared with four state-of-the-art methods. Accurate classification is essential for the intestinal metaplasia grade, which most likely develops into esophageal cancer. Not only does our method come to the aid of physicians for more accurate diagnosis by acting as a second opinion, but it also acts as a training method for junior physicians who need practice in using CLE. Consequently, this work contributes to an automatic classification that facilitates early intervention and decreases samples of required biopsy.
Barretts Esophagus (BE) is a precancerous condition that affects the esophagus tube and has the risk of developing esophageal adenocarcinoma. BE is the process of developing metaplastic intestinal epithelium and replacing the normal cells in the esophageal area. The detection of BE is considered difficult due to its appearance and properties. The diagnosis is usually done through both endoscopy and biopsy. Recently, Computer Aided Diagnosis systems have been developed to support physicians opinion when facing difficulty in detection/classification in different types of diseases. In this paper, an automatic classification of Barretts Esophagus condition is introduced. The presented method enhances the internal features of a Confocal Laser Endomicroscopy (CLE) image by utilizing a proposed enhancement filter. This filter depends on fractional differentiation and integration that improve the features in the discrete wavelet transform of an image. Later on, various features are extracted from each enhanced image on different levels for the multi-classification process. Our approach is validated on a dataset that consists of a group of 32 patients with 262 images with different histology grades. The experimental results demonstrated the efficiency of the proposed technique. Our method helps clinicians for more accurate classification. This potentially helps to reduce the need for biopsies needed for diagnosis, facilitate the regular monitoring of treatment/development of the patients case and can help train doctors with the new endoscopy technology. The accurate automatic classification is particularly important for the Intestinal Metaplasia (IM) type, which could turn into deadly cancerous. Hence, this work contributes to automatic classification that facilitates early intervention/treatment and decreasing biopsy samples needed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.